论文标题

主动通勤者的呼吸道意识路由

Respiratory Aware Routing for Active Commuters

论文作者

Langbridge, Abigail, Ferraro, Pietro, Shorten, Robert

论文摘要

在城市地区旅行的骑自行车的人尤其受到颗粒排放的危害,因为它们的呼吸速度和靠近车辆。在本文中,我们将人类呼吸模型与颗粒物吸入模型相结合,以估计个人首次实时经历的污染风险及其首次心率。我们以这种模型为基准,我们学习了一项政策,该政策同时优化了许多具有多种起源和目的地的自行车手的路线,以最大程度地降低整体污染风险并考虑到交通拥堵的有害影响。我们使用加强学习技术在不同环境中使用骑自行车者健身分布的不同环境中的模拟数据学习了这一策略。这些发现表明,个性化路由在骑自行车时有效降低污染风险,从而提高了积极通勤的净益处。

Cyclists travelling in urban areas are particularly at risk of harm from particulate emissions due to their increased breathing rate and proximity to vehicles. In this paper we combine human respiratory models with models of particulate inhalation to estimate the pollution risk an individual is experiencing in real time given the local pollution level and their heart rate for the first time. Using this model as a baseline, we learn a policy that simultaneously optimises the route for a large number of cyclists with diverse origins and destinations, to minimise overall pollution risk and account for the detrimental impacts of congestion. We learn this policy using reinforcement learning techniques on simulated data in different environments with varying distributions of cyclist fitness. These findings establish that individualised routing is effective in reducing pollution risk while cycling, improving the net benefits of active commuting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源