论文标题
Lebesgue可衡量的增益
Concavity property of minimal $L^2$ integrals with Lebesgue measurable gain
论文作者
论文摘要
在本文中,我们介绍了与Lebesgue可测量增益相关的最小$ l^2 $积分的凹陷属性。作为应用程序,我们为凹面退化为线性,一维情况的表征以及在开放的Riemann表面上具有重量的延伸性问题的表征提供了必要条件。
In this article, we present a concavity property of the minimal $L^2$ integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As applications, we give necessary conditions for our concavity degenerating to linearity, characterizations for 1-dimensional case, and a characterization for the holding of the equality in optimal $L^2$ extension problem on open Riemann surfaces with weights may not be subharmonic.