论文标题
启用自动迁移率的连接性:一种基于MQTT的新型界面,该界面在5G案例研究中评估了Edge-Cloud LiDAR对象检测
Enabling Connectivity for Automated Mobility: A Novel MQTT-based Interface Evaluated in a 5G Case Study on Edge-Cloud Lidar Object Detection
论文作者
论文摘要
实现自动化车辆和外部服务器,智能基础设施和其他道路用户之间安全可靠的高带宽低度连通性是使全自动驾驶成为可能的核心步骤。允许这种连接性的数据接口的可用性有可能区分人造代理在连接,合作和自动化的迁移率系统中的功能与不具有此类接口的人类操作员的能力。连接的代理可以例如共享数据以构建集体环境模型,计划集体行为,并从中央组合的共享数据中集体学习。本文提出了多种解决方案,允许连接的实体交换数据。特别是,我们提出了一个新的通用通信界面,该界面使用消息排队遥测传输(MQTT)协议连接运行机器人操作系统(ROS)的代理。我们的工作集成了用各种关键绩效指标的形式评估连接质量的方法。我们比较了各种方法,这些方法提供了5G网络中Edge-Cloud LiDAR对象检测的示例性用例所需的连接性。我们表明,基于车辆的传感器测量值的可用性与从边缘云中接收到相应的对象列表之间的平均延迟低于87毫秒。所有已实施的解决方案均为开源并免费使用。源代码可在https://github.com/ika-rwth-aachen/ros-v2x-benchmarking-suite上获得。
Enabling secure and reliable high-bandwidth lowlatency connectivity between automated vehicles and external servers, intelligent infrastructure, and other road users is a central step in making fully automated driving possible. The availability of data interfaces, which allow this kind of connectivity, has the potential to distinguish artificial agents' capabilities in connected, cooperative, and automated mobility systems from the capabilities of human operators, who do not possess such interfaces. Connected agents can for example share data to build collective environment models, plan collective behavior, and learn collectively from the shared data that is centrally combined. This paper presents multiple solutions that allow connected entities to exchange data. In particular, we propose a new universal communication interface which uses the Message Queuing Telemetry Transport (MQTT) protocol to connect agents running the Robot Operating System (ROS). Our work integrates methods to assess the connection quality in the form of various key performance indicators in real-time. We compare a variety of approaches that provide the connectivity necessary for the exemplary use case of edge-cloud lidar object detection in a 5G network. We show that the mean latency between the availability of vehicle-based sensor measurements and the reception of a corresponding object list from the edge-cloud is below 87 ms. All implemented solutions are made open-source and free to use. Source code is available at https://github.com/ika-rwth-aachen/ros-v2x-benchmarking-suite.