论文标题
电子排序的RGB-X分类
RGB-X Classification for Electronics Sorting
论文作者
论文摘要
从废物电气和电子设备(WEEE)中有效拆卸和恢复材料是将全球供应链从碳密集型,挖掘的材料转移到可回收和可再生的材料的关键步骤。常规的回收过程依赖于切碎和分类废物流,但是对于由许多不同材料组成的Weee,我们探索了针对许多物体的目标拆卸,以改善材料恢复。许多WEEE对象都具有许多关键特征,因此看起来非常相似,但是它们的材料组成和内部组件布局可能会有所不同,因此,对于随后的拆卸步骤,具有准确的分类器以进行准确的材料分离和恢复至关重要。这项工作介绍了RGB-X(一种多模式图像分类方法),该方法利用了来自外部RGB图像的关键特征,并从X射线图像中生成的图像来准确地对电子对象进行分类。更具体地说,这项工作开发了迭代类激活映射(ICAM),这是一种新型的网络体系结构,明确地侧重于用于准确的电子对象分类所需的多模式特征映射中的细节。为了培训分类器,由于费用和需要专家指导,电子对象缺乏大型且注释良好的X射线数据集。为了克服这个问题,我们提出了一种新的方法,即使用应用于X射线域的域随机化创建合成数据集。合并的RGB-X方法使我们在10代现代智能手机上的准确度为98.6%,其单独的精度为89.1%(RGB)和97.9%(X射线)。我们提供实验结果3来证实我们的结果。
Effectively disassembling and recovering materials from waste electrical and electronic equipment (WEEE) is a critical step in moving global supply chains from carbon-intensive, mined materials to recycled and renewable ones. Conventional recycling processes rely on shredding and sorting waste streams, but for WEEE, which is comprised of numerous dissimilar materials, we explore targeted disassembly of numerous objects for improved material recovery. Many WEEE objects share many key features and therefore can look quite similar, but their material composition and internal component layout can vary, and thus it is critical to have an accurate classifier for subsequent disassembly steps for accurate material separation and recovery. This work introduces RGB-X, a multi-modal image classification approach, that utilizes key features from external RGB images with those generated from X-ray images to accurately classify electronic objects. More specifically, this work develops Iterative Class Activation Mapping (iCAM), a novel network architecture that explicitly focuses on the finer-details in the multi-modal feature maps that are needed for accurate electronic object classification. In order to train a classifier, electronic objects lack large and well annotated X-ray datasets due to expense and need of expert guidance. To overcome this issue, we present a novel way of creating a synthetic dataset using domain randomization applied to the X-ray domain. The combined RGB-X approach gives us an accuracy of 98.6% on 10 generations of modern smartphones, which is greater than their individual accuracies of 89.1% (RGB) and 97.9% (X-ray) independently. We provide experimental results3 to corroborate our results.