论文标题

穿着与成对状态,以及单极和电荷的几何阶段

Dressed vs. Pairwise States, and the Geometric Phase of Monopoles and Charges

论文作者

Csáki, Csaba, Dong, Zi-Yu, Telem, Ofri, Terning, John, Yankielowicz, Shimon

论文摘要

我们构建了电和磁性颗粒的Faddeev-kulish穿着的多片状状态,结合了真实和虚拟软光子的效果。我们在洛伦兹转化下计算了这种穿着状态的特性,并发现它们可以用成对小组下转换的成对多粒子状态识别。 Lorentz转化下的敷料因子的转移是有限的,并且具有简单的几何解释。使用着装状态的转化特性,我们还提出了通过狄拉克字符串的绝热旋转获得的新颖的,完全量子场理论的衍生物,以及DIRAC量化条件。对于一半整数成对的螺旋性,我们表明这些多粒状态已经翻转了自旋统计量,并繁殖了一个令人惊讶的事实,即可以用玻色子制成费米子。

We construct the Faddeev-Kulish dressed multiparticle states of electrically and magnetically charged particles, incorporating the effects of real and virtual soft photons. We calculate the properties of such dressed states under Lorentz transformations, and find that they can be identified with the pairwise multi-particle states that transform under the pairwise little group. The shifts in the dressing factors under Lorentz transformations are finite and have a simple geometric interpretation. Using the transformation properties of the dressed states we also present a novel, fully quantum field theoretic derivation of the geometric (Berry) phase obtained by an adiabatic rotation of the Dirac string, and also of the Dirac quantization condition. For half integer pairwise helcity, we show that these multiparticle states have flipped spin-statistics, reproducing the surprising fact that fermions can be made out of bosons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源