论文标题
攻击尖峰:关于尖峰神经网络对对抗性示例的可转移性和安全性
Attacking the Spike: On the Transferability and Security of Spiking Neural Networks to Adversarial Examples
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Spiking neural networks (SNNs) have attracted much attention for their high energy efficiency and for recent advances in their classification performance. However, unlike traditional deep learning approaches, the analysis and study of the robustness of SNNs to adversarial examples remain relatively underdeveloped. In this work, we focus on advancing the adversarial attack side of SNNs and make three major contributions. First, we show that successful white-box adversarial attacks on SNNs are highly dependent on the underlying surrogate gradient technique, even in the case of adversarially trained SNNs. Second, using the best surrogate gradient technique, we analyze the transferability of adversarial attacks on SNNs and other state-of-the-art architectures like Vision Transformers (ViTs) and Big Transfer Convolutional Neural Networks (CNNs). We demonstrate that the adversarial examples created by non-SNN architectures are not misclassified often by SNNs. Third, due to the lack of an ubiquitous white-box attack that is effective across both the SNN and CNN/ViT domains, we develop a new white-box attack, the Auto Self-Attention Gradient Attack (Auto-SAGA). Our novel attack generates adversarial examples capable of fooling both SNN and non-SNN models simultaneously. Auto-SAGA is as much as $91.1\%$ more effective on SNN/ViT model ensembles and provides a $3\times$ boost in attack effectiveness on adversarially trained SNN ensembles compared to conventional white-box attacks like Auto-PGD. Our experiments and analyses are broad and rigorous covering three datasets (CIFAR-10, CIFAR-100 and ImageNet), five different white-box attacks and nineteen classifier models (seven for each CIFAR dataset and five models for ImageNet).