论文标题

在相干耦合量子振荡器上实现量子储层神经网络

Quantum reservoir neural network implementation on coherently coupled quantum oscillators

论文作者

Dudas, Julien, Carles, Baptiste, Plouet, Erwan, Mizrahi, Alice, Grollier, Julie, Marković, Danijela

论文摘要

量子储层计算是量子神经网络的一种有前途的方法,能够在经典和量子输入数据上解决艰苦学习任务。但是,当前使用量子位的方法遭受有限的连接性。我们提出了量子储层的实现,该实现通过使用参数耦合的量子振荡器而不是物理耦合量子量来获得大量密集连接的神经元。我们根据超导电路分析了特定的硬件实现:仅使用两个耦合的量子振荡器,我们创建了一个量子储层,其中最多包括81个神经元。我们在基准任务上获得了99%的最新准确性,否则至少需要24个经典振荡器才能解决。我们的结果给出了系统中的耦合和耗散要求,并显示它们如何影响量子储层的性能。除了量子储层计算之外,使用参数耦合的骨气模式的使用还有望实现大型量子神经网络体系结构,仅使用10个耦合量子振荡器实现了数十亿个神经元。

Quantum reservoir computing is a promising approach for quantum neural networks, capable of solving hard learning tasks on both classical and quantum input data. However, current approaches with qubits suffer from limited connectivity. We propose an implementation for quantum reservoir that obtains a large number of densely connected neurons by using parametrically coupled quantum oscillators instead of physically coupled qubits. We analyse a specific hardware implementation based on superconducting circuits: with just two coupled quantum oscillators, we create a quantum reservoir comprising up to 81 neurons. We obtain state-of-the-art accuracy of 99 % on benchmark tasks that otherwise require at least 24 classical oscillators to be solved. Our results give the coupling and dissipation requirements in the system and show how they affect the performance of the quantum reservoir. Beyond quantum reservoir computing, the use of parametrically coupled bosonic modes holds promise for realizing large quantum neural network architectures, with billions of neurons implemented with only 10 coupled quantum oscillators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源