论文标题

与量子嵌入密切相关的材料的量子量子模拟

Ab initio Quantum Simulation of Strongly Correlated Materials with Quantum Embedding

论文作者

Cao, Changsu, Sun, Jinzhao, Yuan, Xiao, Hu, Han-Shi, Pham, Hung Q., Lv, Dingshun

论文摘要

量子计算在各种量子化学应用中显示出巨大的潜力,例如药物发现,材料设计和催化剂优化。尽管在简单分子的量子模拟中取得了重大进展,但量子计算机上固态材料的较早仿真仍处于早期阶段,这主要是因为接近热力学极限时系统大小在接近热力学极限时迅速变得较大。在这项工作中,我们在周期性密度矩阵嵌入理论之外引入了一种基于轨道的多碎片方法,导致当前近期量子计算机的问题大小明显较小。我们证明了方法与具有复杂电子结构的固态系统上的常规方法和实验相比,我们的方法的准确性和效率。其中包括氢链(1D-H)的自旋极化状态,硝酸硼(H-BN)的方程以及镍氧化物(NIO)中的磁有序,这是一种典型的强相关固体。我们的结果表明,量子嵌入与化学直觉的碎片结合可以大大推进逼真的材料的量子模拟,从而为解决近期量子设备上的重要但经典的硬工业问题铺平了道路。

Quantum computing has shown great potential in various quantum chemical applications such as drug discovery, material design, and catalyst optimization. Although significant progress has been made in quantum simulation of simple molecules, ab initio simulation of solid-state materials on quantum computers is still in its early stage, mostly owing to the fact that the system size quickly becomes prohibitively large when approaching the thermodynamic limit. In this work, we introduce an orbital-based multi-fragment approach on top of the periodic density matrix embedding theory, resulting in a significantly smaller problem size for the current near-term quantum computer. We demonstrate the accuracy and efficiency of our method compared with the conventional methodologies and experiments on solid-state systems with complex electronic structures. These include spin polarized states of a hydrogen chain (1D-H), the equation of states of a boron nitride layer (h-BN) as well as the magnetic ordering in nickel oxide (NiO), a prototypical strongly correlated solid. Our results suggest that quantum embedding combined with a chemically intuitive fragmentation can greatly advance quantum simulation of realistic materials, thereby paving the way for solving important yet classically hard industrial problems on near-term quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源