论文标题
具有形态的自动回归3D生成建模的大脑
Morphology-preserving Autoregressive 3D Generative Modelling of the Brain
论文作者
论文摘要
可以使用医学成像数据研究人类解剖学,形态和相关疾病。但是,访问医学成像数据受到治理和隐私问题,数据所有权和获取成本的限制,从而限制了我们理解人体的能力。解决此问题的一种可能解决方案是创建能够学习的模型,然后生成人体的合成图像,这些模型以相关性的特定特征(例如,年龄,性别和疾病状态)为条件。最近,以神经网络形式的深层生成模型已被用于创建自然场景的合成2D图像。尽管如此,数据稀缺,算法和计算局限性也阻碍了使用正确解剖形态生产高分辨率3D体积成像数据的能力。这项工作提出了一个生成模型,可以缩放以产生人类大脑的解剖学正确,高分辨率和现实的图像,具有必要的质量,以允许进一步的下游分析。产生潜在无限数据的数据的能力不仅可以对人体解剖学和病理学进行大规模研究,而不会危及患者的隐私,而且还可以在异常检测,模态综合,有限的数据和公平和道德AI领域的研究中显着提高研究。代码和训练有素的模型可在以下网址提供:https://github.com/amigolab/synthanatomy。
Human anatomy, morphology, and associated diseases can be studied using medical imaging data. However, access to medical imaging data is restricted by governance and privacy concerns, data ownership, and the cost of acquisition, thus limiting our ability to understand the human body. A possible solution to this issue is the creation of a model able to learn and then generate synthetic images of the human body conditioned on specific characteristics of relevance (e.g., age, sex, and disease status). Deep generative models, in the form of neural networks, have been recently used to create synthetic 2D images of natural scenes. Still, the ability to produce high-resolution 3D volumetric imaging data with correct anatomical morphology has been hampered by data scarcity and algorithmic and computational limitations. This work proposes a generative model that can be scaled to produce anatomically correct, high-resolution, and realistic images of the human brain, with the necessary quality to allow further downstream analyses. The ability to generate a potentially unlimited amount of data not only enables large-scale studies of human anatomy and pathology without jeopardizing patient privacy, but also significantly advances research in the field of anomaly detection, modality synthesis, learning under limited data, and fair and ethical AI. Code and trained models are available at: https://github.com/AmigoLab/SynthAnatomy.