论文标题
用星系恒星质量,紫外线仪和电离来测量暗物质速度分散体
Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization
论文作者
论文摘要
非相关的温暖暗物质粒子速度的根平方尺度为$ v_ {h \ textrm {rms}}}}(a)= v_ {h \ textrm {rms}}}}}}}}}(1)/a $,其中$ a $ a $是宇宙的扩展参数。由于暗物质自由流动引起的,这种速度分散剂导致密度波动的功率频谱截止。令$ k_ \ textrm {fs}(t_ \ textrm {eq})$是在相等的辐射和物质均等时的自由流式截止界限。我们获得$ v_ { \ textrm {mpc}^{ - 1} $,以68 \%的置信度,从观察到的星系恒星质量和静止框架超紫罗莱珠的发光性的分布中。该结果与电源一致。从速度分散截止下,我们获得了限制$ v_ {h \ textrm {rms}}(1)<0.54 \ textrm {km/s} $,以及$ k_ \ textrm {fs {fs}(t_ \ textrm {eq})> 1.5 \ textrm}这些结果与基于螺旋星系旋转曲线的先前测量以及第一星系和电源的形成一致。这些测得的参数决定了温暖暗物质的温度与质量比。该比率恰好与NO冻结和无冻结的温度暗物质情景0暗物质粒子与标准模型部门解耦。如果大自然选择了无冻结并且没有冷冻范围的情况,则自旋1/2和自旋1暗物质会不受欢迎。简要审查了与所有当前测量结果一致的标准暗物质的标准模型,并具有标量暗物质。在文献中可以找到的暗物质粒子质量的限制被解决。
The root-mean-square of non-relativistic warm dark matter particle velocities scales as $v_{h\textrm{rms}}(a) = v_{h\textrm{rms}}(1)/a$, where $a$ is the expansion parameter of the universe. This velocity dispersion results in a cut-off of the power spectrum of density fluctuations due to dark matter free-streaming. Let $k_\textrm{fs}(t_\textrm{eq})$ be the free-streaming comoving cut-off wavenumber at the time of equal densities of radiation and matter. We obtain $v_{h\textrm{rms}}(1) = 0.41^{+0.14}_{-0.12} \textrm{ km/s}$, and $k_\textrm{fs}(t_\textrm{eq}) = 2.0^{+0.8}_{-0.5} \textrm{ Mpc}^{-1}$, at 68\% confidence, from the observed distributions of galaxy stellar masses and rest frame ultra-violet luminosities. This result is consistent with reionization. From the velocity dispersion cut-off we obtain the limits $v_{h\textrm{rms}}(1) < 0.54 \textrm{ km/s}$, and $k_\textrm{fs}(t_\textrm{eq}) > 1.5 \textrm{ Mpc}^{-1}$. These results are in agreement with previous measurements based on spiral galaxy rotation curves, and on the formation of first galaxies and reionization. These measured parameters determine the temperature-to-mass ratio of warm dark matter. This ratio happens to be in agreement with the no freeze-in and no freeze-out warm dark matter scenario of spin 0 dark matter particles decoupling early on from the standard model sector. Spin 1/2 and spin 1 dark matter are disfavored if nature has chosen the no freeze-in and no freeze-out scenario. An extension of the standard model of quarks and leptons, with scalar dark matter that couples to the Higgs boson, that is in agreement with all current measurements, is briefly reviewed. Discrepancies with limits on dark matter particle mass that can be found in the literature, are addressed.