论文标题
在$ \barγ$下定位的价值频带的隐藏旋转轨道纹理的最大值
Hidden spin-orbital texture at the $\barΓ$-located valence band maximum of a transition metal dichalcogenide semiconductor
论文作者
论文摘要
寻找能够在固体中驱动自旋偏振电子失衡的刺激是旋转设备开发的核心挑战。但是,在没有磁性的情况下,通往该目标的路线受到高度限制,迄今为止,只有几种合适的化合物和驾驶机制配对。在这里,通过旋转和角度分辨的光发以及密度功能理论,我们确定了$ p $衍生的半导体的散装散装散装频段,即1T-HFSE $ _2 $具有当地的,地基型旋转质地,该质地在每个Se-Sublayer中都限制在每个Se-Sublayer中,这是由于强大的Sublayer-Sblayer-Leclayer-Lecalise dipoles沿着强大的sublayer-superated the-superated Electric dipoles沿着$ -C $ -AxiS cum-siss cum-siss cum-siss cum-siss cum-siss。这种隐藏的自旋偏振化体现在“耦合自旋轨道纹理”中,并具有来自组成$ p $ - 轨道的等效贡献。尽管每个SE Sublayer的总体自旋轨道纹理都严格遵守时间反转对称性(TRS),但在局部维护了时间反向不变动量,旋转轨道混合术语与净极化量具有净极性。这些明显的破坏性贡献占主导地位,可以选择性地调整线性光两极化,从而促进了所有$ k_z $在布里鲁因区中心观察出明显的自旋偏振。我们讨论了使用固定能量线性极化的光源从1T结构的过渡金属二进制基因生成的自旋偏振群的影响。
Finding stimuli capable of driving an imbalance of spin-polarised electrons within a solid is the central challenge in the development of spintronic devices. However, without the aid of magnetism, routes towards this goal are highly constrained with only a few suitable pairings of compounds and driving mechanisms found to date. Here, through spin- and angle-resolved photoemission along with density functional theory, we establish how the $p$-derived bulk valence bands of semiconducting 1T-HfSe$_2$ possess a local, ground-state spin texture spatially confined within each Se-sublayer due to strong sublayer-localised electric dipoles orientated along the $c$-axis. This hidden spin-polarisation manifests in a `coupled spin-orbital texture' with in-equivalent contributions from the constituent $p$-orbitals. While the overall spin-orbital texture for each Se sublayer is in strict adherence to time-reversal symmetry (TRS), spin-orbital mixing terms with net polarisations at time-reversal invariant momenta are locally maintained. These apparent TRS-breaking contributions dominate, and can be selectively tuned between with a choice of linear light polarisation, facilitating the observation of pronounced spin-polarisations at the Brillouin zone centre for all $k_z$. We discuss the implications for the generation of spin-polarised populations from 1T-structured transition metal dichalcogenides using a fixed energy, linearly polarised light source.