论文标题

使用加固学习在复杂的运动环境中导航的活动颗粒

Active particles using reinforcement learning to navigate in complex motility landscapes

论文作者

Monderkamp, Paul A., Schwarzendahl, Fabian Jan, Klatt, Michael A., Löwen, Hartmut

论文摘要

随着最小技术的长度尺度继续超过微米尺度,将机器人组件配备有智能和自主决策的手段变得越来越重要。借助表格Q学习算法,我们设计了一个用于训练微型威格器的模型,以快速浏览由各种不同标量运动场给出的环境,同时收到有限的本地信息。我们比较通过第一次通道到目标的时间定义的微型维格默斯的性能以及合适的参考案例的性能。我们表明,使用我们的强化学习模型获得的策略确实代表了一种有效的导航策略,表现优于参考案例。通过在完成培训后,通过与各种陌生的环境面对游泳者,我们表明获得的策略通用是不同类别的随机场。

As the length scales of the smallest technology continue to advance beyond the micron scale it becomes increasingly important to equip robotic components with the means for intelligent and autonomous decision making with limited information. With the help of a tabular Q-learning algorithm, we design a model for training a microswimmer, to navigate quickly through an environment given by various different scalar motility fields, while receiving a limited amount of local information. We compare the performances of the microswimmer, defined via time of first passage to a target, with performances of suitable reference cases. We show that the strategy obtained with our reinforcement learning model indeed represents an efficient navigation strategy, that outperforms the reference cases. By confronting the swimmer with a variety of unfamiliar environments after the finalised training, we show that the obtained strategy generalises to different classes of random fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源