论文标题
无人机自动降落在平台上的深入强化学习策略
A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Platform
论文作者
论文摘要
随着行业的发展,无人机出现在各个领域。近年来,深厚的强化学习在游戏中取得了令人印象深刻的收益,我们致力于将深入的强化学习算法应用于机器人技术领域,将强化学习算法从游戏场景转移到现实世界中的应用程序场景。我们受到Openai Gym的Lunarlander的启发,我们决定在强化学习领域进行大胆的尝试以控制无人机。目前,在机器人控制上应用强化学习算法仍然缺乏工作,与机器人控制有关的物理模拟平台仅适用于验证经典算法,并且不适合访问培训的增强学习算法。在本文中,我们将面对这个问题,弥合物理模拟平台与智能代理之间的差距,将智能代理连接到物理模拟平台,使代理可以在近似现实世界的模拟器中学习和完成无人机飞行任务。我们提出了一个基于凉亭的增强学习框架,该框架是一种物理模拟平台(ROS-RL),并在框架中使用了三种连续的动作空间增强学习算法来处理无人机自动降落的问题。实验显示了该算法的有效性,该算法是基于强化学习的无人机自动着陆的任务,取得了全面的成功。
With the development of industry, drones are appearing in various field. In recent years, deep reinforcement learning has made impressive gains in games, and we are committed to applying deep reinforcement learning algorithms to the field of robotics, moving reinforcement learning algorithms from game scenarios to real-world application scenarios. We are inspired by the LunarLander of OpenAI Gym, we decided to make a bold attempt in the field of reinforcement learning to control drones. At present, there is still a lack of work applying reinforcement learning algorithms to robot control, the physical simulation platform related to robot control is only suitable for the verification of classical algorithms, and is not suitable for accessing reinforcement learning algorithms for the training. In this paper, we will face this problem, bridging the gap between physical simulation platforms and intelligent agent, connecting intelligent agents to a physical simulation platform, allowing agents to learn and complete drone flight tasks in a simulator that approximates the real world. We proposed a reinforcement learning framework based on Gazebo that is a kind of physical simulation platform (ROS-RL), and used three continuous action space reinforcement learning algorithms in the framework to dealing with the problem of autonomous landing of drones. Experiments show the effectiveness of the algorithm, the task of autonomous landing of drones based on reinforcement learning achieved full success.