论文标题
在子结构逻辑中的联系含义
Connexive implications in Substructural Logics
论文作者
论文摘要
本文致力于调查与交换的二次结构逻辑中可定义的共同含义,并从语义角度进行交换,在交换的次交换(fle-Algebras)的亚varieties中。特别是,我们询问了足够和必要的条件,在[6]中定义的类似于共同含义的操作的概括为heyting代数仍然满足相互联系的论文。事实证明,在大多数情况下,连接原理等于相对于布尔代数的方程式glivenko属性。此外,我们还提供了一些哲学上的结果,例如,关于上述操作与G. Polya的合理推论逻辑相关性的讨论,以及一些表征导致弱和强的结合性。
This paper is devoted to the investigation of term-definable connexive implications in substructural logics with exchange and, on the semantical perspective, in sub-varieties of commutative residuated lattices (FLe-algebras). In particular, we inquire into sufficient and necessary conditions under which generalizations of the connexive implication-like operation defined in [6] for Heyting algebras still satisfy connexive theses. It will turn out that, in most cases, connexive principles are equivalent to the equational Glivenko property with respect to Boolean algebras. Furthermore, we provide some philosophical upshots like e.g., a discussion on the relevance of the above operation in relationship with G. Polya's logic of plausible inference, and some characterization results on weak and strong connexivity.