论文标题
对I类Protostellar System OPH-IRS的物理特性44
Physical properties of accretion shocks toward the Class I protostellar system Oph-IRS 44
论文作者
论文摘要
(删节的)物理过程(例如吸积冲击)被认为在包膜成分仍然存在的原始相中很常见,并且它们可以从灰尘释放分子到气相,从而改变了磁盘的原始化学成分。因此,对积聚冲击的研究对于更好地理解磁盘尺度及其化学输出的物理过程至关重要。这项工作的目的是评估与硫相关物种所追踪的增生冲击的特征。我们介绍了I类Protostar Oph-Irs 44的ALMA高角度分辨率观测值(0.1英寸)。观察到0.87毫米时的连续元素排放以及与硫相关的物种(例如So),因此$ _ {2} $ $^{34} $ so $ _ {2} $,以及一行朝着IRS 44检测到的一行。所有检测到的线的排放峰位于连续峰的〜0.1英寸(〜14 au),我们发现30 au内的Inflaling-Roting-Roting Motions。但是,仅在50至30 au之间看到红移发射。在距原恒星约400 au的偏移区域中看到了更冷,更静止的材料,我们在这些数据中找不到开plerian概况的证据。吸积冲击是针对So $ _ {2} $排放的高温,高密度和速度的最合理的解释。当材料进入磁盘系统 - Envelope系统时,它会产生吸积冲击,从而增加灰尘温度并取消灰尘,从而从粉尘谷物中$ _ {2} $分子。高能量因此,$ _ {2} $过渡(〜200 k)似乎是吸积冲击的最佳示踪剂,可以跟踪未来的较高的角度分辨率ALMA观察结果,并与其他物种进行了比较,以评估其在将灰尘释放到气相释放分子释放分子中的重要性。
(Abridged) Physical processes such as accretion shocks are thought to be common in the protostellar phase, where the envelope component is still present, and they can release molecules from the dust to the gas phase, altering the original chemical composition of the disk. Consequently, the study of accretion shocks is essential for a better understanding of the physical processes at disk scales and their chemical output. The purpose of this work is to assess the characteristics of accretion shocks traced by sulfur-related species. We present ALMA high angular resolution observations (0.1") of the Class I protostar Oph-IRS 44. The continuum emission at 0.87 mm is observed, together with sulfur-related species such as SO, SO$_{2}$, and $^{34}$SO$_{2}$. Six lines of SO$_{2}$, two lines of $^{34}$SO$_{2}$, and one line of SO are detected toward IRS 44. The emission of all the detected lines peaks at ~0.1" (~14 au) from the continuum peak and we find infalling-rotating motions inside 30 au. However, only redshifted emission is seen between 50 and 30 au. Colder and more quiescent material is seen toward an offset region located at a distance of ~400 au from the protostar, and we do not find evidence of a Keplerian profile in these data. Accretion shocks are the most plausible explanation for the high temperatures, high densities, and velocities found for the SO$_{2}$ emission. When material enters the disk--envelope system, it generates accretion shocks that increase the dust temperature and desorb SO$_{2}$ molecules from dust grains. High-energy SO$_{2}$ transitions (~200 K) seem to be the best tracers of accretion shocks that can be followed up by future higher angular resolution ALMA observations and compared to other species to assess their importance in releasing molecules from the dust to the gas phase.