论文标题

单阶段广泛的多标签学习(BMIML)具有不同的相关性及其在医学图像分类中的应用

Single-Stage Broad Multi-Instance Multi-Label Learning (BMIML) with Diverse Inter-Correlations and its application to medical image classification

论文作者

Lai, Qi, Zhou, Jianhang, Gan, Yanfen, Vong, Chi-Man, Huang, Deshuang

论文摘要

由多个实例(例如图像贴片)描述,并与多个标签同时描述。现有的MIML方法在许多应用中很有用,但是由于多个问题,大多数方法都具有相对较低的精度和训练效率:i)忽略了标签间相关性(即,与对象相对应的多个标签之间的概率相关性)被忽略; ii)不能直接(或共同)与由于缺失的实例标签引起的其他类型的相关性,无法直接(或共同)学习不同实例的概率相关性(即不同实例的概率相关性); iii)只能在多个阶段中学习多种相关(例如,标签间相关性,标签间相关性)。为了解决这些问题,提出了一个新的单阶段框架,称为广泛的多标签学习(BMIML)。在BMIML中,设计了三个创新的模块:i)设计了基于广泛学习系统(BLS)的自动加权标签增强学习(AWLEL),它们同时有效地捕获了传统的BLS,而传统的BLS则不能; ii)构建了一个特定的MIML神经网络,称为可扩展的多个概率回归(SMIPR),仅使用对象标签有效地估算了固定相关性,这可以为学习提供其他概率信息; iii)最后,互动决策优化(IDO)旨在将Awlel和Smipr的结果组合和优化,并形成单阶段框架。实验表明,BMIML的准确性具有高度(甚至比现有方法更好)的竞争力,甚至比大多数MIML方法甚至更快,甚至对于大型医学图像数据集(> 90k图像)。

described by multiple instances (e.g., image patches) and simultaneously associated with multiple labels. Existing MIML methods are useful in many applications but most of which suffer from relatively low accuracy and training efficiency due to several issues: i) the inter-label correlations(i.e., the probabilistic correlations between the multiple labels corresponding to an object) are neglected; ii) the inter-instance correlations (i.e., the probabilistic correlations of different instances in predicting the object label) cannot be learned directly (or jointly) with other types of correlations due to the missing instance labels; iii) diverse inter-correlations (e.g., inter-label correlations, inter-instance correlations) can only be learned in multiple stages. To resolve these issues, a new single-stage framework called broad multi-instance multi-label learning (BMIML) is proposed. In BMIML, there are three innovative modules: i) an auto-weighted label enhancement learning (AWLEL) based on broad learning system (BLS) is designed, which simultaneously and efficiently captures the inter-label correlations while traditional BLS cannot; ii) A specific MIML neural network called scalable multi-instance probabilistic regression (SMIPR) is constructed to effectively estimate the inter-instance correlations using the object label only, which can provide additional probabilistic information for learning; iii) Finally, an interactive decision optimization (IDO) is designed to combine and optimize the results from AWLEL and SMIPR and form a single-stage framework. Experiments show that BMIML is highly competitive to (or even better than) existing methods in accuracy and much faster than most MIML methods even for large medical image data sets (> 90K images).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源