论文标题

弱相互作用不相互量的二维晶格的离散到核模型:六边形案例

A Discrete-to-Continuum Model of Weakly Interacting Incommensurate Two-Dimensional Lattices: The hexagonal case

论文作者

Espanol, Malena I., Golovaty, Dmitry, Wilber, J. Patrick

论文摘要

在本文中,我们扩展了我们在先前工作中开发的离散性能过程,以得出六边形扭曲双层材料的连续变量模型,其中一层固定了一层。我们使用包含弹性项的离散能量和弱相互作用项,该项可以利用Lennard-Jones的潜力或Kolmogorov-Crespi势。为了验证我们的建模,我们执行数值模拟,以比较原始离散模型的预测和所提出的连续模型,该模型还显示了与扭曲的双层石墨烯的实验发现一致的一致性。

In this paper, we extend the discrete-to-continuum procedure we developed in our previous work to derive a continuum variational model for a hexagonal twisted bilayer material in which one layer is fixed. We use a discrete energy containing elastic terms and a weak interaction term that could utilize either a Lennard-Jones potential or a Kolmogorov-Crespi potential. To validate our modeling, we perform numerical simulations to compare the predictions of the original discrete model and the proposed continuum model, which also show an agreement with experimental findings for, e.g., twisted bilayer graphene.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源