论文标题
机器学习方法用于巨星的光度金属度
A machine learning approach to photometric metallicities of giant stars
论文作者
论文摘要
尽管大规模的光度测量提供了进步,但恒星特征(例如金属性)通常仍限于通常具有明亮的,附近的低渗透星的光谱观测。为了纠正这一点,我们提出了一种神经网络方法,用于估计具有8波段光度计和GAIA EDR3的8频段光度法和视差的红色巨星的金属性和距离,以及2个质量和明智的调查。该算法解释了每个输入处可能输出的范围以及与训练集(通过退出)兼容的模型范围所产生的预测。采用了两阶段的过程,其中最初的网络使用来自Gaia EDR3的大量嘈杂的视差数据培训了光及时性视差,然后使用跨座位和lamost调查的光谱金属率培训了二级网络,并使用了lamost调查以及增强的特征空间,并利用了第一阶段的Parallax Parallax估算。该算法产生金属预测,平均不确定性为$ \ pm0.19 $ dex。该方法应用于银河条/凸起内的恒星,特别关注具有GAIA径向速度的169万个物体样品。我们通过在银河棒/凸起中检查具有金属性的空间和运动梯度,以恢复垂直金属性梯度($ -0.528 \ $ -0.528 \ pm 0.002 $ dex/kpc)和BAR($ -21.29.29 \ pm 2.74 $ deg)。
Despite the advances provided by large-scale photometric surveys, stellar features - such as metallicity - generally remain limited to spectroscopic observations often of bright, nearby low-extinction stars. To rectify this, we present a neural network approach for estimating the metallicities and distances of red giant stars with 8-band photometry and parallaxes from Gaia EDR3 and the 2MASS and WISE surveys. The algorithm accounts for uncertainties in the predictions arising from the range of possible outputs at each input and from the range of models compatible with the training set (through drop-out). A two-stage procedure is adopted where an initial network to estimate photo-astrometric parallaxes is trained using a large sample of noisy parallax data from Gaia EDR3 and then a secondary network is trained using spectroscopic metallicities from the APOGEE and LAMOST surveys and an augmented feature space utilising the first-stage parallax estimates. The algorithm produces metallicity predictions with an average uncertainty of $\pm0.19$ dex. The methodology is applied to stars within the Galactic bar/bulge with particular focus on a sample of 1.69 million objects with Gaia radial velocities. We demonstrate the use and validity of our approach by inspecting both spatial and kinematic gradients with metallicity in the Galactic bar/bulge recovering previous results on the vertical metallicity gradient ($-0.528 \pm 0.002$ dex/kpc) and the vertex deviation of the bar ($-21.29 \pm 2.74$ deg).