论文标题
多项式筛的应用:超出变量分离
Application of a polynomial sieve: beyond separation of variables
论文作者
论文摘要
在\ mathbb {z} [x_1,\ ldots,x_n] $中设置一个多项式$ f \。方形筛子可以为整体$ \ mathbf {x} \ in [-b,b]^n $的积分数量提供上限,以使$ f(\ mathbf {x})$是一个完美的正方形。最近,这已经进行了总体的概括:首先是一个功率筛子,计数$ \ mathbf {x} \ in [-b,b]^n $ in $ f(\ mathbf {x})= y^r $可解决$ y \ in \ y \ in \ mathbb {z} $;然后在多项式筛子上,计数$ \ mathbf {x} \在[-b,b]^n $中,$ f(\ mathbf {x})= g(y)$是可以解决的,对于给定的多项$ g $。正式地,多项式筛引理可以包含[-b,b]^n $计数$ \ mathbf {x} \ in [-b,b]^n $的更普遍的问题,其中$ f(y,\ mathbf {x})= 0 $可溶解,对于给定的多元元素$ f $。但是,以前的应用程序仅在$ f(y,\ mathbf {x})$中表现出变量分离的情况下才成功,即$ f(y,\ mathbf {x})$采用form $ f(\ mathbf {x}) - g(y) - g(y)$。在目前的工作中,我们介绍了多项式筛的第一个应用,以计数$ \ mathbf {x} \ in [-b,b]^n $ in [-b,b]^n $,以至于$ f(y,\ mathbf {x})= 0 $是可解决的,在这种情况下,$ f $不显示变量分离的情况。因此,我们获得了一个新的结果,涉及一个与稀薄集中的计数点有关的问题。
Let a polynomial $f \in \mathbb{Z}[X_1,\ldots,X_n]$ be given. The square sieve can provide an upper bound for the number of integral $\mathbf{x} \in [-B,B]^n$ such that $f(\mathbf{x})$ is a perfect square. Recently this has been generalized substantially: first to a power sieve, counting $\mathbf{x} \in [-B,B]^n$ for which $f(\mathbf{x})=y^r$ is solvable for $y \in \mathbb{Z}$; then to a polynomial sieve, counting $\mathbf{x} \in [-B,B]^n$ for which $f(\mathbf{x})=g(y)$ is solvable, for a given polynomial $g$. Formally, a polynomial sieve lemma can encompass the more general problem of counting $\mathbf{x} \in [-B,B]^n$ for which $F(y,\mathbf{x})=0$ is solvable, for a given polynomial $F$. Previous applications, however, have only succeeded in the case that $F(y,\mathbf{x})$ exhibits separation of variables, that is, $F(y,\mathbf{x})$ takes the form $f(\mathbf{x}) - g(y)$. In the present work, we present the first application of a polynomial sieve to count $\mathbf{x} \in [-B,B]^n$ such that $F(y,\mathbf{x})=0$ is solvable, in a case for which $F$ does not exhibit separation of variables. Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets.