论文标题
Sian:多器官组织病理学图像综合样式引导实例自适应归一化
SIAN: Style-Guided Instance-Adaptive Normalization for Multi-Organ Histopathology Image Synthesis
论文作者
论文摘要
现有的组织病理学图像合成的深神经网络无法生成与不同器官一致的图像样式,并且无法产生簇核的准确边界。为了解决这些问题,我们提出了一种样式引导的实例自适应标准化(SIAN)方法,以合成来自不同器官的组织病理学图像的逼真的颜色分布和纹理。 Sian包含四个阶段:语义,风格化,实例化和调制。前两个阶段通过使用语义图和学习的图像样式向量来综合图像语义和样式。实例化模块整合了几何和拓扑信息,并产生准确的核边界。我们在多器官数据集上验证了所提出的方法,广泛的实验结果表明,所提出的方法比针对五个器官的四种最先进的方法生成更现实的组织病理学图像。通过将拟议方法的合成图像合并到模型培训的方法中,实例分割网络可以实现最新的性能。
Existing deep neural networks for histopathology image synthesis cannot generate image styles that align with different organs, and cannot produce accurate boundaries of clustered nuclei. To address these issues, we propose a style-guided instance-adaptive normalization (SIAN) approach to synthesize realistic color distributions and textures for histopathology images from different organs. SIAN contains four phases, semantization, stylization, instantiation, and modulation. The first two phases synthesize image semantics and styles by using semantic maps and learned image style vectors. The instantiation module integrates geometrical and topological information and generates accurate nuclei boundaries. We validate the proposed approach on a multiple-organ dataset, Extensive experimental results demonstrate that the proposed method generates more realistic histopathology images than four state-of-the-art approaches for five organs. By incorporating synthetic images from the proposed approach to model training, an instance segmentation network can achieve state-of-the-art performance.