论文标题
持续学习,快速而缓慢
Continual Learning, Fast and Slow
论文作者
论文摘要
根据互补学习系统(CLS)理论〜\ cite {mccleland1995there}在神经科学中,人类通过两个互补系统有效\ emph {持续学习}:一种以海马为中心的快速学习系统,用于海马,以快速学习细节,个人经验,个人体验;以及一个慢慢的学习系统,位于新皮层中,以逐步获取有关环境的结构化知识。在该理论的促进下,我们提出\ emph {dualnets}(对于双网络),这是一个一般的持续学习框架,该框架包括一个快速学习系统,用于监督从特定任务学习模式分离的代表和从特定的学习系统中,用于通过自我培养的学习(SSL)来表示任务 - 敏捷的一般代表的表示(SSL)。双网络可以将两种表示类型无缝地纳入整体框架中,以促进在深层神经网络中更好地持续学习。通过广泛的实验,我们在各种持续的学习协议上演示了双网络的有希望的结果,从标准离线,任务感知设置到具有挑战性的在线,无任务的场景。值得注意的是,在Ctrl〜 \ Cite {veniat20202020202020202020202020202020202020202020202020202020202020202021-CONTINUAL}的基准中,双nets可以实现竞争性能。此外,我们进行了全面的消融研究,以验证双nets功效,鲁棒性和可扩展性。代码将在\ url {https://github.com/phquang/dualnet}提供。
According to the Complementary Learning Systems (CLS) theory~\cite{mcclelland1995there} in neuroscience, humans do effective \emph{continual learning} through two complementary systems: a fast learning system centered on the hippocampus for rapid learning of the specifics, individual experiences; and a slow learning system located in the neocortex for the gradual acquisition of structured knowledge about the environment. Motivated by this theory, we propose \emph{DualNets} (for Dual Networks), a general continual learning framework comprising a fast learning system for supervised learning of pattern-separated representation from specific tasks and a slow learning system for representation learning of task-agnostic general representation via Self-Supervised Learning (SSL). DualNets can seamlessly incorporate both representation types into a holistic framework to facilitate better continual learning in deep neural networks. Via extensive experiments, we demonstrate the promising results of DualNets on a wide range of continual learning protocols, ranging from the standard offline, task-aware setting to the challenging online, task-free scenario. Notably, on the CTrL~\cite{veniat2020efficient} benchmark that has unrelated tasks with vastly different visual images, DualNets can achieve competitive performance with existing state-of-the-art dynamic architecture strategies~\cite{ostapenko2021continual}. Furthermore, we conduct comprehensive ablation studies to validate DualNets efficacy, robustness, and scalability. Code will be made available at \url{https://github.com/phquang/DualNet}.