论文标题
在合并驱动的情况下,异常重的黑洞直接崩溃
Direct collapse of exceptionally heavy black holes in the merger-driven scenario
论文作者
论文摘要
我们重新审视由富含气体,金属富含金属富含金属的星系在红移$ z \ sim 10 $中形成的超质量光盘(SMD)中的条件。我们发现,SMD自然形成静液压核,这些静态核心经过迅速增强的超级恒星相,然后直接通过一般的相对论不稳定性直接塌陷成巨大的黑洞。核心的生长和崩溃发生在$ \ sim 5 \ times 10^5 $ yr之内,来自SMD的形成,产生明亮的电磁,中微子和引力波瞬变,分别为几分钟,典型的持续时间,典型的通量和典型的频率和典型的应变仪器在$ \ sim 10^$ \ sim 10^$ s $ s $ \ s $ s^$ s^$^{-8} $ a cm $^{ - 2} $和$ \ sim4 \ times 10^{ - 21} $。我们为所产生的黑洞质量提供了一个简单的拟合公式,范围从$ 10^6 $ m $ _ {\ odot} $到$ 10^8 $ m $ _ {\ odot} $,具体取决于初始SMD配置。至关重要的是,我们的分析不需要对气体的热性能,也不需要在SMD内的角动量损耗机理上进行任何特定假设。在这些发现的带领下,我们认为以合并驱动的场景为快速形成$ z> 6 $的超级质量黑洞的形成提供了强劲的途径。它为最亮,最古老的类星体的起源提供了解释,而不需要从较小的种子中持续生长阶段。它的吸烟枪标志可以直接通过多通间的观测来测试。
We revisit the conditions present in supermassive discs (SMDs) formed by the merger of gas-rich, metal-enriched galaxies at red-shift $z\sim 10$. We find that SMDs naturally form hydrostatic cores which go through a rapidly accreting supermassive star phase, before directly collapsing into massive black holes via the general relativistic instability. The growth and collapse of the cores occurs within $\sim 5\times 10^5$ yr from the formation of the SMD, producing bright electromagnetic, neutrino and gravitational wave transients with a typical duration of a few minutes and, respectively, a typical flux and a typical strain amplitude at Earth of $\sim 10^{-8}$ erg s$^{-1}$ cm$^{-2}$ and $\sim4\times 10^{-21}$. We provide a simple fitting formula for the the resulting black hole masses, which range from a few $10^6$ M$_{\odot}$ to $10^8$ M$_{\odot}$ depending on the initial SMD configuration. Crucially, our analysis does not require any specific assumption on the thermal properties of the gas, nor on the angular momentum loss mechanisms within the SMD. Led by these findings, we argue that the merger-driven scenario provides a robust pathway for the rapid formation of supermassive black holes at $z > 6$. It provides an explanation for the origin of the brightest and oldest quasars without the need of a sustained growth phase from a much smaller seed. Its smoking gun signatures can be tested directly via multi-messenger observations.