论文标题
高维度的良好分离和超平面横向
Well-Separation and Hyperplane Transversals in High Dimensions
论文作者
论文摘要
$ k $点的家族在$ d $尺寸中套装,如果任何两个不相交的亚家族的凸壳可以通过超平面分离,则可以很好地分离。良好的分离是一个有力的假设,它使我们得出结论,某些类型的广义HAM-Sandwich削减了该点集的存在。但是,检查给定的高维点集是否有此属性有多难?从这个问题开始,我们研究了高维中横向和分离存在的几个算法方面。 首先,我们给出一个明确的证据,即$ k $点的套件是且仅当他们的凸面船体承认没有$(k-2)$ - transsersal,即如果没有$(k-2)$ - 尺寸平面,与所有$ k $集的convex壳相交。因此,检查良好分离的任务在于复杂性级别的综合。接下来,我们表明,决定是否有超平面 - 转盘(即$(d-1)$ - transversal)的$ d + 1 $ $ d $ d $的一部分,其中$ d $ d $是$ d + 1 $ thine of的一部分,其中$ d $是输入的一部分。结果,得出的是,测试良好分离的总体问题是综合的。此外,我们表明,找到一个超出相交集数量的超平面是NP-HARD,但允许$ω\ left(\ frac {\ log k} {k \ log \ log \ log k} \ right)$ - 近似算法,在$ d $ d $和$ k $中是$ d $和$ k $的近似算法。当所有点集都是有限的时,我们表明检查是否存在$(k-2)$ - 横向实际上是强烈的NP完整组件。
A family of $k$ point sets in $d$ dimensions is well-separated if the convex hulls of any two disjoint subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how hard is it to check if a given family of high-dimensional point sets has this property? Starting from this question, we study several algorithmic aspects of the existence of transversals and separations in high-dimensions. First, we give an explicit proof that $k$ point sets are well-separated if and only if their convex hulls admit no $(k - 2)$-transversal, i.e., if there exists no $(k - 2)$-dimensional flat that intersects the convex hulls of all $k$ sets. It follows that the task of checking well-separation lies in the complexity class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal (that is, a $(d - 1)$-transversal) of a family of $d + 1$ line segments in $\mathbb{R}^d$, where $d$ is part of the input. As a consequence, it follows that the general problem of testing well-separation is coNP-complete. Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets is NP-hard, but allows for an $Ω\left(\frac{\log k}{k \log \log k}\right)$-approximation algorithm that is polynomial in $d$ and $k$, when each set consists of a single point. When all point sets are finite, we show that checking whether there exists a $(k - 2)$-transversal is in fact strongly NP-complete.