论文标题
$ \ mathbb {z} $ - 超平面布置和cohen-dimca-orlik类型定理的本地系统共同体
$\mathbb{Z}$-local system cohomology of hyperplane arrangements and a Cohen-Dimca-Orlik type theorem
论文作者
论文摘要
超平面布置补充的局部系统共同体学组在超几何积分理论,米尔诺纤维的拓扑和覆盖空间中起着重要作用。重要的定理之一是通用$ \ mathbb {c} $的消失定理 - 可以追溯到AOMOTO的工作的本地系统。后来,科恩(Cohen),迪卡(Dimca)和奥尔里克(Orlik)证明了《消失的定理》的更强版本。在本文中,我们证明了$ \ mathbb {z} $ - 本地系统的Cohen-Dimca-Orlik类型定理。
Local system cohomology groups of the complements of hyperplane arrangements have played an important role in the theory of hypergeometric integrals, the topology of Milnor fibers and covering spaces. One of the important theorems is the vanishing theorem for generic $\mathbb{C}$-local systems which goes back to Aomoto's work. Later, Cohen, Dimca, and Orlik proved a stronger version of the vanishing theorem. In this paper, we prove a Cohen-Dimca-Orlik type theorem for $\mathbb{Z}$-local systems.