论文标题

大黄蜂重力模型中的静态球形真空解决方案

Static spherical vacuum solutions in the bumblebee gravity model

论文作者

Xu, Rui, Liang, Dicong, Shao, Lijing

论文摘要

Bumblebee重力模型是引力的矢量调整理论,其中矢量场非微夫妻与Ricci张量。通过使用球形对称性研究真空场方程,我们在该模型中发现了两个黑孔(BH)溶液的家族:一个溶液具有消失的载体场的消失,另一个具有RICCI张量的径向分量消失。当矢量场和RICCI张量之间的耦合设置为零时,第一个系列将成为Reissner-Nordström解决方案,而第二个家庭则将其退化为schwarzschild溶液,矢量场为零。在两个家族的一般数值溶液中均获得了矢量场和ricci张量之间的非零耦合。除了BH解决方案外,我们还揭示了在假定的事件范围内具有非变化的$ tt $组件的解决方案,在该度量范围内,公制的$ rr $ - 组件在曲率标量是有限的,而公制的$ rr $ compont。这些解决方案不受现有观察结果的支持,而是提出了具有学术利益的某些财产。我们通过将BH解决方案纳入针对太阳系观测值和超质量BHS的图像的测试来结束这项研究。

The bumblebee gravity model is a vector-tensor theory of gravitation where the vector field nonminimally couples to the Ricci tensor. By investigating the vacuum field equations with spherical symmetry, we find two families of black-hole (BH) solutions in this model: one has a vanishing radial component of the vector field and the other has a vanishing radial component of the Ricci tensor. When the coupling between the vector field and the Ricci tensor is set to zero, the first family becomes the Reissner-Nordström solution while the second family degenerates to the Schwarzschild solution with the vector field being zero. General numerical solutions in both families are obtained for nonzero coupling between the vector field and the Ricci tensor. Besides BH solutions, we also reveal the existence of solutions that have a nonvanishing $tt$-component of the metric on the supposed event horizon where the $rr$-component of the metric diverges while the curvature scalars are finite. These solutions are not supported by existing observations but present certain properties that are of academic interests. We conclude the study by putting the BH solutions into tests against the Solar-system observations and the images of supermassive BHs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源