论文标题

产品歧管和第二类的曲率操作员

Product manifolds and the curvature operator of the second kind

论文作者

Li, Xiaolong

论文摘要

我们研究了第二种产品的曲率操作员,并获得了一些最佳的刚度结果。例如,我们证明,$ n $维的非流量的通用封面与$(n+\ frac {n-2} {n} {n})$ - nonnegative(分别为$(n+\ \ \ \\ frac {n+\ frac {n-2} {n} {n} {n})$ - 非posive curv curv curv curv curv curv curververements $ \ mathbb {s}^{n-1} \ times \ mathbb {r} $(分别为$ \ mathbb {h}^{n-1} \ times \ times \ times \ mathbb {r} $)直至缩放。我们还证明了$ \ mathbb {s}^{n_1} \ times \ Mathbb {s}^{n_2} $和$ \ mathbb { riemannian流形,以及$ \ mathbb {cp}^{m_1} \ times \ times \ mathbb {cp}^{m_2} $和$ \ mathbb {ch}^{ch}^{m_1} Kähler歧管。我们的方法是尖锐而代数。

We investigate the curvature operator of the second kind on product Riemannian manifolds and obtain some optimal rigidity results. For instance, we prove that the universal cover of an $n$-dimensional non-flat complete locally reducible Riemannian manifold with $(n+\frac{n-2}{n})$-nonnegative (respectively, $(n+\frac{n-2}{n})$-nonpositive) curvature operator of the second kind must be isometric to $\mathbb{S}^{n-1}\times \mathbb{R}$ (respectively, $\mathbb{H}^{n-1}\times \mathbb{R}$) up to scaling. We also prove analogous optimal rigidity results for $\mathbb{S}^{n_1}\times \mathbb{S}^{n_2}$ and $\mathbb{H}^{n_1}\times \mathbb{H}^{n_2}$, $n_1,n_2 \geq 2$, among product Riemannian manifolds, as well as for $\mathbb{CP}^{m_1}\times \mathbb{CP}^{m_2}$ and $\mathbb{CH}^{m_1}\times \mathbb{CH}^{m_2}$, $m_1,m_2\geq 1$, among product Kähler manifolds. Our approach is pointwise and algebraic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源