论文标题

有监督的对比学习,以分类上颌窦中的偏丽异常

Supervised Contrastive Learning to Classify Paranasal Anomalies in the Maxillary Sinus

论文作者

Bhattacharya, Debayan, Becker, Benjamin Tobias, Behrendt, Finn, Bengs, Marcel, Beyersdorff, Dirk, Eggert, Dennis, Petersen, Elina, Jansen, Florian, Petersen, Marvin, Cheng, Bastian, Betz, Christian, Schlaefer, Alexander, Hoffmann, Anna Sophie

论文摘要

使用深度学习技术,可以在MRI图像中自动检测到旁那鼻鼻窦系统中的异常,并可以根据其体积,形状和其他参数(例如局部对比度)进行进一步分析和分类。但是,由于培训数据有限,传统的监督学习方法通​​常无法概括。旁那间异常分类中现有的深度学习方法最多可诊断出一种异常。在我们的工作中,我们考虑三个异常。具体而言,我们采用3D CNN来分离上颌鼻窦体积,而没有异常的鼻窦体积与具有异常的上颌窦体积。为了从一个小标记的数据集中学习强大的表示形式,我们提出了一种新型的学习范式,结合了对比损失和跨透明镜的损失。特别是,我们使用有监督的对比损失,鼓励有和没有异常的上颌窦量的嵌入来形成两个不同的簇,而跨层损失则鼓励3D CNN保持其歧视能力。我们报告,两种损失的优化是优化的优化,而不是仅一次损失。我们还发现我们的培训策略会提高标签效率。使用我们的方法,3D CNN分类器的AUROC为0.85,而用跨透镜损失优化的3D CNN分类器可实现0.66的AUROC。

Using deep learning techniques, anomalies in the paranasal sinus system can be detected automatically in MRI images and can be further analyzed and classified based on their volume, shape and other parameters like local contrast. However due to limited training data, traditional supervised learning methods often fail to generalize. Existing deep learning methods in paranasal anomaly classification have been used to diagnose at most one anomaly. In our work, we consider three anomalies. Specifically, we employ a 3D CNN to separate maxillary sinus volumes without anomalies from maxillary sinus volumes with anomalies. To learn robust representations from a small labelled dataset, we propose a novel learning paradigm that combines contrastive loss and cross-entropy loss. Particularly, we use a supervised contrastive loss that encourages embeddings of maxillary sinus volumes with and without anomaly to form two distinct clusters while the cross-entropy loss encourages the 3D CNN to maintain its discriminative ability. We report that optimising with both losses is advantageous over optimising with only one loss. We also find that our training strategy leads to label efficiency. With our method, a 3D CNN classifier achieves an AUROC of 0.85 while a 3D CNN classifier optimised with cross-entropy loss achieves an AUROC of 0.66.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源