论文标题

部分可观测时空混沌系统的无模型预测

The Power of Uniform Sampling for Coresets

论文作者

Braverman, Vladimir, Cohen-Addad, Vincent, Jiang, Shaofeng H. -C., Krauthgamer, Robert, Schwiegelshohn, Chris, Toftrup, Mads Bech, Wu, Xuan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Motivated by practical generalizations of the classic $k$-median and $k$-means objectives, such as clustering with size constraints, fair clustering, and Wasserstein barycenter, we introduce a meta-theorem for designing coresets for constrained-clustering problems. The meta-theorem reduces the task of coreset construction to one on a bounded number of ring instances with a much-relaxed additive error. This reduction enables us to construct coresets using uniform sampling, in contrast to the widely-used importance sampling, and consequently we can easily handle constrained objectives. Notably and perhaps surprisingly, this simpler sampling scheme can yield coresets whose size is independent of $n$, the number of input points. Our technique yields smaller coresets, and sometimes the first coresets, for a large number of constrained clustering problems, including capacitated clustering, fair clustering, Euclidean Wasserstein barycenter, clustering in minor-excluded graph, and polygon clustering under Fréchet and Hausdorff distance. Finally, our technique yields also smaller coresets for $1$-median in low-dimensional Euclidean spaces, specifically of size $\tilde{O}(\varepsilon^{-1.5})$ in $\mathbb{R}^2$ and $\tilde{O}(\varepsilon^{-1.6})$ in $\mathbb{R}^3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源