论文标题

DISA:用于分布式凸复合优化的双重不精确拆分算法

DISA: A Dual Inexact Splitting Algorithm for Distributed Convex Composite Optimization

论文作者

Guo, Luyao, Shi, Xinli, Yang, Shaofu, Cao, Jinde

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we propose a novel Dual Inexact Splitting Algorithm (DISA) for distributed convex composite optimization problems, where the local loss function consists of a smooth term and a possibly nonsmooth term composed with a linear mapping. DISA, for the first time, eliminates the dependence of the convergent step-size range on the Euclidean norm of the linear mapping, while inheriting the advantages of the classic Primal-Dual Proximal Splitting Algorithm (PD-PSA): simple structure and easy implementation. This indicates that DISA can be executed without prior knowledge of the norm, and tiny step-sizes can be avoided when the norm is large. Additionally, we prove sublinear and linear convergence rates of DISA under general convexity and metric subregularity, respectively. Moreover, we provide a variant of DISA with approximate proximal mapping and prove its global convergence and sublinear convergence rate. Numerical experiments corroborate our theoretical analyses and demonstrate a significant acceleration of DISA compared to existing PD-PSAs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源