论文标题
部分可观测时空混沌系统的无模型预测
Conflict-Aware Pseudo Labeling via Optimal Transport for Entity Alignment
论文作者
论文摘要
实体对齐旨在发现在不同知识图(kgs)之间具有相同含义的独特等效实体对。现有模型的重点是将KG投影到潜在的嵌入空间中,因此可以捕获实体对齐实体之间的固有语义。但是,在训练期间,一致性冲突的不利影响被忽略了,从而限制了实体对准绩效。为了解决这个问题,我们通过最佳运输模型(CPL-OT)提出了一种新颖的冲突感知伪标签,以实现实体对齐。关键的想法是迭代的伪标签对准对,并通过冲突意识到的最佳运输(OT)建模来提高实体对齐的精确度。 CPL-OT由两个关键组成部分组成:实体将学习嵌入全球 - 本地聚集和迭代冲突感知的伪标签 - 它们相互加强。为了减轻伪标签期间的一致性冲突,我们建议使用最佳运输作为有效手段,以保证两个公斤之间的一对一实体对准,而总体运输成本最少。在基准数据集上进行的广泛实验验证了CPL-OT在两种设置下有或没有先前对齐种子的设置下的优势。
Entity alignment aims to discover unique equivalent entity pairs with the same meaning across different knowledge graphs (KGs). Existing models have focused on projecting KGs into a latent embedding space so that inherent semantics between entities can be captured for entity alignment. However, the adverse impacts of alignment conflicts have been largely overlooked during training, thereby limiting the entity alignment performance. To address this issue, we propose a novel Conflict-aware Pseudo Labeling via Optimal Transport model (CPL-OT) for entity alignment. The key idea is to iteratively pseudo-label alignment pairs empowered with conflict-aware optimal transport (OT) modeling to boost the precision of entity alignment. CPL-OT is composed of two key components -- entity embedding learning with global-local aggregation and iterative conflict-aware pseudo labeling -- that mutually reinforce each other. To mitigate alignment conflicts during pseudo labeling, we propose to use optimal transport as an effective means to warrant one-to-one entity alignment between two KGs with the minimal overall transport cost. Extensive experiments on benchmark datasets validate the superiority of CPL-OT over state-of-the-art baselines under both settings with and without prior alignment seeds.