论文标题
关于表示形式的完整性的注释
A note on the integrality of volumes of representations
论文作者
论文摘要
令$γ$为$ \ mathrm {so}(2n,1)$的无扭转,非均匀晶格。我们提出了Bucher,Burger和Iozzi定理的基本,组合 - 地形证明,它指出表示表示的体积$ρ:γ\ to \ to \ Mathrm {so}(so}(2n,1)$,适当正常化,如果$ n $大于或等于$ 2 $ 2 $。
Let $Γ$ be a torsion-free, non-uniform lattice in $\mathrm{SO}(2n,1)$. We present an elementary, combinatorial-geometrical proof of a theorem of Bucher, Burger, and Iozzi which states that the volume of a representation $ρ:Γ\to\mathrm{SO}(2n,1)$, properly normalized, is an integer if $n$ is greater than or equal to $2$.