论文标题

层次变压器带有时空上下文聚合的分层变压器,用于下一个利益点建议

Hierarchical Transformer with Spatio-Temporal Context Aggregation for Next Point-of-Interest Recommendation

论文作者

Xie, Jiayi, Chen, Zhenzhong

论文摘要

下一个利益点(POI)的建议是基于位置的社交网络中的一项关键任务,但由于用户运动中表现出的高度差异和个性化,因此仍然具有挑战性。在这项工作中,我们探讨了由用户入住序列中的多个跨性短期结构模式组成的潜在分层结构。我们提出了一个时空上下文汇总的层次变压器(星际影响),以进行下一个POI推荐,该建议采用堆叠的层次编码器来递归编码时空上下文并明确定位不同粒状的子序列。更具体地说,在每个编码器中,全局注意力层捕获了序列的时空上下文,而在每个子序列中执行的本地注意力层则使用本地上下文增强了子序列建模。序列分区层渗透到整体上下文中的位置和子序列的长度,因此可以很好地保存子序列中的语义。最后,子序列聚集层融合了每个子序列中形成相应子序列表示形式的表示,从而产生了一个新的高级粒度序列。编码器的堆叠捕获了入住序列的潜在分层结构,该结构用于预测下一个访问的POI。在三个公共数据集上进行的广泛实验表明,所提出的模型在提供建议的解释时达到了卓越的性能。代码可在https://github.com/jennyxiejiayi/star-hit上找到。

Next point-of-interest (POI) recommendation is a critical task in location-based social networks, yet remains challenging due to a high degree of variation and personalization exhibited in user movements. In this work, we explore the latent hierarchical structure composed of multi-granularity short-term structural patterns in user check-in sequences. We propose a Spatio-Temporal context AggRegated Hierarchical Transformer (STAR-HiT) for next POI recommendation, which employs stacked hierarchical encoders to recursively encode the spatio-temporal context and explicitly locate subsequences of different granularities. More specifically, in each encoder, the global attention layer captures the spatio-temporal context of the sequence, while the local attention layer performed within each subsequence enhances subsequence modeling using the local context. The sequence partition layer infers positions and lengths of subsequences from the global context adaptively, such that semantics in subsequences can be well preserved. Finally, the subsequence aggregation layer fuses representations within each subsequence to form the corresponding subsequence representation, thereby generating a new sequence of higher-level granularity. The stacking of encoders captures the latent hierarchical structure of the check-in sequence, which is used to predict the next visiting POI. Extensive experiments on three public datasets demonstrate that the proposed model achieves superior performance whilst providing explanations for recommendations. Codes are available at https://github.com/JennyXieJiayi/STAR-HiT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源