论文标题
在没有用户特定培训的情况下,将学习SSVEP BCI拼写的DNN合奏的转移学习
Transfer Learning of an Ensemble of DNNs for SSVEP BCI Spellers without User-Specific Training
论文作者
论文摘要
目的:用脑电图(脑电图)测量的稳态视觉诱发电势(SSVEP),在脑部计算机界面(BCI)拼写中产生不错的信息传输速率(ITR)。但是,文献中当前高性能的SSVEP BCI拼写器需要为每个新用户进行最初的冗长而累人的用户特定培训,以进行系统适应,包括使用脑电图实验,算法培训和校准的数据收集(所有这些都是在实际使用系统之前)。这阻碍了BCI的广泛使用。为了确保实用性,我们提出了一种基于深度神经网络(DNN)集合的高度新颖的目标识别方法,该方法不需要任何特定于用户的培训。方法:我们从先前进行的脑电图实验的参与者中利用已经存在的文献数据集,以训练全球目标标识符DNN,然后对每个参与者进行微调。我们将这种微调DNN的合奏转移到新的用户实例中,根据参与者与新用户的统计相似性确定k最具代表性的DNN,并通过集合预测的加权组合来预测目标角色。结果:在两个大规模的基准和β数据集上,我们的方法可实现令人印象深刻的155.51位/分钟和114.64位/分钟ITR。代码可用于可重复性:https://github.com/osmanberke/ensemble-of-dnns结论:所提出的方法在两个数据集中[0.2-1.0]中所有刺激持续时间均显着优于所有刺激持续时间的所有最新替代方案。意义:我们的合奏-DNN方法有可能在日常生活中促进BCI拼写者的实际广泛部署,因为我们提供了最高的性能,同时无需任何特定于用户的培训即可立即使用。
Objective: Steady-state visually evoked potentials (SSVEPs), measured with EEG (electroencephalogram), yield decent information transfer rates (ITR) in brain-computer interface (BCI) spellers. However, the current high performing SSVEP BCI spellers in the literature require an initial lengthy and tiring user-specific training for each new user for system adaptation, including data collection with EEG experiments, algorithm training and calibration (all are before the actual use of the system). This impedes the widespread use of BCIs. To ensure practicality, we propose a highly novel target identification method based on an ensemble of deep neural networks (DNNs), which does not require any sort of user-specific training. Method: We exploit already-existing literature datasets from participants of previously conducted EEG experiments to train a global target identifier DNN first, which is then fine-tuned to each participant. We transfer this ensemble of fine-tuned DNNs to the new user instance, determine the k most representative DNNs according to the participants' statistical similarities to the new user, and predict the target character through a weighted combination of the ensemble predictions. Results: On two large-scale benchmark and BETA datasets, our method achieves impressive 155.51 bits/min and 114.64 bits/min ITRs. Code is available for reproducibility: https://github.com/osmanberke/Ensemble-of-DNNs Conclusion: The proposed method significantly outperforms all the state-of-the-art alternatives for all stimulation durations in [0.2-1.0] seconds on both datasets. Significance: Our Ensemble-DNN method has the potential to promote the practical widespread deployment of BCI spellers in daily lives as we provide the highest performance while enabling the immediate system use without any user-specific training.