论文标题
神经标志重演:深度逼真的手语重新定位
Neural Sign Reenactor: Deep Photorealistic Sign Language Retargeting
论文作者
论文摘要
在本文中,我们介绍了一条神经渲染管道,用于将一个人在源视频中的面部表情,头部姿势和身体运动转移到目标视频中的另一个人。我们将我们的方法应用于手语视频的挑战性案例:给定手语用户的源视频,我们可以忠实地将执行的手册(例如,握手,棕榈方向,动作,移动,位置)和非手动转移,例如,眼睛凝视,面部表情,面部表情,嘴巴,头部,嘴巴和身体动作)将标志以照片为目标的视频,以照片为目标。我们的方法可用于手语匿名,手语产生(合成模块),以及重新制作其他类型的全身活动(舞蹈,表演表演,锻炼等)。我们进行了详细的定性和定量评估和比较,这些评估和比较表明了我们获得的特别有希望和现实的结果以及方法比现有方法的优势。
In this paper, we introduce a neural rendering pipeline for transferring the facial expressions, head pose, and body movements of one person in a source video to another in a target video. We apply our method to the challenging case of Sign Language videos: given a source video of a sign language user, we can faithfully transfer the performed manual (e.g., handshape, palm orientation, movement, location) and non-manual (e.g., eye gaze, facial expressions, mouth patterns, head, and body movements) signs to a target video in a photo-realistic manner. Our method can be used for Sign Language Anonymization, Sign Language Production (synthesis module), as well as for reenacting other types of full body activities (dancing, acting performance, exercising, etc.). We conduct detailed qualitative and quantitative evaluations and comparisons, which demonstrate the particularly promising and realistic results that we obtain and the advantages of our method over existing approaches.