论文标题
Feynman积分分解的交叉相交理论的最新进展
Recent progress in intersection theory for Feynman integrals decomposition
论文作者
论文摘要
扰动QFT中的高精度计算通常需要评估大量Feynman积分。通过在Feynman积分之间使用线性身份,可以大大降低此任务的复杂性。基于相交数的数学理论,最近引入了这种身份和Feynman积分分解的新方法,并应用于许多非平凡的例子。在本说明中,我们讨论了算法中的最新发展,以评估交叉数字,以及它们在减少Feynman积分的应用中的应用。
High precision calculations in perturbative QFT often require evaluation of big collection of Feynman integrals. Complexity of this task can be greatly reduced via the usage of linear identities among Feynman integrals. Based on mathematical theory of intersection numbers, recently a new method for derivation of such identities and decomposition of Feynman integrals was introduced and applied to many non-trivial examples. In this note we discuss the latest developments in algorithms for the evaluation of intersection numbers, and their application to the reduction of Feynman integrals.