论文标题

多解决编码采集的联合演示和融合:统一的图像形成和重建方法

Joint demosaicing and fusion of multiresolution coded acquisitions: A unified image formation and reconstruction method

论文作者

Picone, Daniele, Mura, Mauro Dalla, Condat, Laurent

论文摘要

新型的光学成像设备允许混合采集方式,例如由单个焦平面阵列捕获的局部空间和光谱分辨率的压缩采集。在这项工作中,我们建议在统一的框架中对多分辨率编码采集(MRCA)的捕获系统进行建模,该框架本质上包括基于光谱/颜色滤波器阵列,压缩编码孔和多分辨率传感的传统系统。我们还提出了一种基于模型的图像重建算法,该算法对MRCA框架中任何模型的任何采集进行了联合表达和融合(JODEFU)。 Jodefu重建算法通过近端分裂技术解决了一个反问题,并能够以最高可用的空间和光谱分辨率重建未压缩的图像数据库。可以在https://github.com/danaroth83/jodefu上获得该代码的实现。

Novel optical imaging devices allow for hybrid acquisition modalities such as compressed acquisitions with locally different spatial and spectral resolutions captured by a single focal plane array. In this work, we propose to model the capturing system of a multiresolution coded acquisition (MRCA) in a unified framework, which natively includes conventional systems such as those based on spectral/color filter arrays, compressed coded apertures, and multiresolution sensing. We also propose a model-based image reconstruction algorithm performing a joint demosaicing and fusion (JoDeFu) of any acquisition modeled in the MRCA framework. The JoDeFu reconstruction algorithm solves an inverse problem with a proximal splitting technique and is able to reconstruct an uncompressed image datacube at the highest available spatial and spectral resolution. An implementation of the code is available at https://github.com/danaroth83/jodefu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源