论文标题
曲率控制的带对齐过渡在1D van der waals异质结构中
Curvature-Controlled Band Alignment Transitions in 1D van der Waals Heterostructures
论文作者
论文摘要
一维(1D)范德华(VDW)异质结构,在过渡金属二核苷(TMDC)的同轴纳米管之间形成,已成为纳米科学的新努力领域。设计和设计此类1D VDW异质结构的属性的关键在于了解异质结构中同轴纳米管的带对齐。然而,曲率,管直径和插管耦合如何影响1D VDW异质结构中TMDC纳米管的带边缘水平和带对对齐。在这里,通过全面的第一原理计算和分析,我们在TMDC纳米管的1D VDW异质结构中建立了一个完整的频段对齐框架。我们揭示,随着TMDC纳米管的直径降低,曲率诱导的柔韧性和固有的圆周拉伸应变的组合效应会导致导致最小值(CBM)的快速降低,而最大值(VBM)表现出最初的较低效果(VBM),表现出最初的降低,表现出较低的角色,该角色是在该角色上的变化。 VBM的轨道特征的过渡还导致小直径扶手椅和手性纳米管的直接到间接带隙过渡,以及在曲折纳米管中的光致发光猝灭。 As individual TMDC nanotubes form coaxial 1D vdW heterostructures, the effect of intertube coupling via flexovoltage effect can result in a transition of intertube band alignment from Type II to Type I in multiple heterostructural systems, including large-diameter MoSe$_2$@WS$_2$, MoTe$_2$@MoSe$_2$, and MOTE $ _2 $@ws $ _2 $异质结构。这些结果为1D VDW异质结构的合理设计奠定了基础。
One-dimensional (1D) van der Waals (vdW) heterostructures, formed between coaxial nanotubes of transition metal dichalcogenides (TMDCs), have emerged as a new area of endeavor in nanoscience. A key to designing and engineering the properties of such 1D vdW heterostructures lies on understanding the band alignment of coaxial nanotubes in the heterostructures. However, how curvature, tube diameters, and intertube coupling affect the band-edge levels and band alignment of TMDC nanotubes in 1D vdW heterostructures remains unknown. Here, through comprehensive first-principles calculations and analyses, we establish a complete framework of band alignment in 1D vdW heterostructures of TMDC nanotubes. We reveal that, as the diameter of a TMDC nanotube decreases, the combined effects of curvature-induced flexoelectricity and intrinsic circumferential tensile strain cause a rapid and continuous lowering of the conduction band minimum (CBM), whereas the valence band maximum (VBM) exhibits an initial lowering before rising, which originates from a change in the orbital character of the VBM. The transition in the orbital character of VBM also leads to direct-to-indirect bandgap transition in small-diameter armchair and chiral nanotubes, as well as photoluminescence quenching in zigzag nanotubes. As individual TMDC nanotubes form coaxial 1D vdW heterostructures, the effect of intertube coupling via flexovoltage effect can result in a transition of intertube band alignment from Type II to Type I in multiple heterostructural systems, including large-diameter MoSe$_2$@WS$_2$, MoTe$_2$@MoSe$_2$, and MoTe$_2$@WS$_2$ heterostructures. These results lay down a foundation for the rational design of 1D vdW heterostructures.