论文标题
在RNN中基于树的学习,以预测功耗
Tree-Based Learning in RNNs for Power Consumption Forecasting
论文作者
论文摘要
在称为RNN(P)的几个时间滞后的复发神经网络是自然回归ARX(P)模型的自然概括。当不同的时间尺度会影响给定现象时,它是一种强大的预测工具,因为它发生在能源领域,每小时,每日,每周和每年的互动共存。具有成本效益的BPTT是RNN的学习算法的行业标准。我们证明,在培训RNN(P)模型时,其他学习算法在时间和空间复杂性方面都更加有效。我们还介绍了一种新的学习算法,即树木重组的复发学习,该学习利用了展开网络的树表示,并且似乎更有效。我们提出了RNN(P)模型的应用,以在每小时规模上进行功耗预测:实验结果证明了所提出的算法的效率以及所选模型在点和概率预测能量消耗中实现的出色预测准确性。
A Recurrent Neural Network that operates on several time lags, called an RNN(p), is the natural generalization of an Autoregressive ARX(p) model. It is a powerful forecasting tool when different time scales can influence a given phenomenon, as it happens in the energy sector where hourly, daily, weekly and yearly interactions coexist. The cost-effective BPTT is the industry standard as learning algorithm for RNNs. We prove that, when training RNN(p) models, other learning algorithms turn out to be much more efficient in terms of both time and space complexity. We also introduce a new learning algorithm, the Tree Recombined Recurrent Learning, that leverages on a tree representation of the unrolled network and appears to be even more effective. We present an application of RNN(p) models for power consumption forecasting on the hourly scale: experimental results demonstrate the efficiency of the proposed algorithm and the excellent predictive accuracy achieved by the selected model both in point and in probabilistic forecasting of the energy consumption.