论文标题
深度接收器的数据增强
Data Augmentation for Deep Receivers
论文作者
论文摘要
深度神经网络(DNN)允许数字接收器学习在复杂的环境中进行操作。为此,最好使用具有与他们要推断的大型统计关系的大标签数据集对DNN进行培训。对于DNN辅助接收器,获取标记的数据通常涉及以降低频谱效率成本的试点信号传导,通常导致访问有限的数据集。在本文中,我们研究了如何将一小部分标记的飞行员数据丰富到较大的数据集中,以训练深层接收器。通过广泛使用数据增强技术来丰富视觉和文本数据的动机,我们提出了专门的增强方案,以利用数字通信数据的特征。我们将深度接收器数据增强的关键考虑因素确定为域取向,类(星座)多样性和较低复杂性的需求。遵循这些准则,我们设计了三个互补的增强,以利用数字星座的几何特性。我们的合并增强方法建立在这些不同的增强功能的优点基础上,以从瞬时渠道分布中综合可靠的数据,以用于培训深度接收器。此外,我们利用先前的渠道实现来提高增强样品的可靠性。
Deep neural networks (DNNs) allow digital receivers to learn to operate in complex environments. To do so, DNNs should preferably be trained using large labeled data sets with a similar statistical relationship as the one under which they are to infer. For DNN-aided receivers, obtaining labeled data conventionally involves pilot signalling at the cost of reduced spectral efficiency, typically resulting in access to limited data sets. In this paper, we study how one can enrich a small set of labeled pilots data into a larger data set for training deep receivers. Motivated by the widespread use of data augmentation techniques for enriching visual and text data, we propose dedicated augmentation schemes that exploits the characteristics of digital communication data. We identify the key considerations in data augmentations for deep receivers as the need for domain orientation, class (constellation) diversity, and low complexity. Following these guidelines, we devise three complementing augmentations that exploit the geometric properties of digital constellations. Our combined augmentation approach builds on the merits of these different augmentations to synthesize reliable data from a momentary channel distribution, to be used for training deep receivers. Furthermore, we exploit previous channel realizations to increase the reliability of the augmented samples.