论文标题

从对象事件数据中提取和编码功能的框架

A Framework for Extracting and Encoding Features from Object-Centric Event Data

论文作者

Adams, Jan Niklas, Park, Gyunam, Levich, Sergej, Schuster, Daniel, van der Aalst, Wil M. P.

论文摘要

传统的过程挖掘技术将事件数据作为输入,其中每个事件与一个对象完全关联。对象表示过程的实例化。以对象为中心的事件数据包含与表达多个过程相互作用的多个对象关联的事件。由于传统的过程挖掘技术假设与一个对象相关的事件,因此这些技术不能应用于以对象为中心的事件数据。为了使用传统的过程挖掘技术,通过删除所有对象参考,以一种以对象为中心的事件数据来平坦。扁平化过程是有损的,导致从扁平数据中提取的不准确的特征。此外,在变平时丢失了以对象事件数据的图形结构。在本文中,我们介绍了一个通用框架,用于从对象事件数据中提取和编码功能。我们在以对象为中心的事件数据上本地计算功能,从而导致准确的度量。此外,我们为这些功能提供了三个编码:基于表格,顺序和图形。尽管表格和顺序编码已在过程挖掘中大量使用,但基于图的编码是一种保留以对象中心事件数据结构的新技术。我们提供六种用例:可视化和三个编码中的每个用例。我们在预测用例中使用可解释的AI来显示以对象为中心的特征的实用性以及针对预测模型的基于顺序和基于图的编码的结构。

Traditional process mining techniques take event data as input where each event is associated with exactly one object. An object represents the instantiation of a process. Object-centric event data contain events associated with multiple objects expressing the interaction of multiple processes. As traditional process mining techniques assume events associated with exactly one object, these techniques cannot be applied to object-centric event data. To use traditional process mining techniques, the object-centric event data are flattened by removing all object references but one. The flattening process is lossy, leading to inaccurate features extracted from flattened data. Furthermore, the graph-like structure of object-centric event data is lost when flattening. In this paper, we introduce a general framework for extracting and encoding features from object-centric event data. We calculate features natively on the object-centric event data, leading to accurate measures. Furthermore, we provide three encodings for these features: tabular, sequential, and graph-based. While tabular and sequential encodings have been heavily used in process mining, the graph-based encoding is a new technique preserving the structure of the object-centric event data. We provide six use cases: a visualization and a prediction use case for each of the three encodings. We use explainable AI in the prediction use cases to show the utility of both the object-centric features and the structure of the sequential and graph-based encoding for a predictive model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源