论文标题

在Rosenzweig-Macarthur模型中,对功能形式没有敏感性,具有强烈的环境随机性

No sensitivity to functional forms in the Rosenzweig-MacArthur model with strong environmental stochasticity

论文作者

Barraquand, Frédéric

论文摘要

经典的Rosenzweig-Macarthur Predator-Prey模型已显示出表现出的,就像生态学的其他耦合非线性普通微分方程(OD)一样,担心对模型结构的敏感性。这种敏感性表现为明显不同的社区动力学,其功能响应几乎相同但数学表达式不同。使用Fussman&Blasius(2005)考虑的三种功能响应,使用Rosenzweig-Macarthur模型的随机微分方程(SDE)版本,我表明这种敏感性似乎仅仅是ODES或随机系统的属性。与使用的数学公式无关,具有强烈环境噪声的SDE具有非常相似的波动模式。尽管线性化捕食者 - 纯模型的特征值已被用作结构敏感性的论点,但它们也可以是反对结构敏感性的论点。虽然特征值的实际部分的迹象对模型结构很敏感,但它的幅度和虚构部分的存在却不是,这表明噪声驱动的振荡对于广泛的携带能力。然后,我讨论在随机环境中,用于捕食者或其他生态系统中评估结构灵敏度的多种方法。

The classic Rosenzweig-MacArthur predator-prey model has been shown to exhibit, like other coupled nonlinear ordinary differential equations (ODEs) from ecology, worrying sensitivity to model structure. This sensitivity manifests as markedly different community dynamics arising from saturating functional responses with nearly identical shapes but different mathematical expressions. Using a stochastic differential equation (SDE) version of the Rosenzweig-MacArthur model with the three functional responses considered by Fussman & Blasius (2005), I show that such sensitivity seems to be solely a property of ODEs or stochastic systems with weak noise. SDEs with strong environmental noise have by contrast very similar fluctuations patterns, irrespective of the mathematical formula used. Although eigenvalues of linearised predator-prey models have been used as an argument for structural sensitivity, they can also be an argument against structural sensitivity. While the sign of the eigenvalues' real part is sensitive to model structure, its magnitude and the presence of imaginary parts are not, which suggests noise-driven oscillations for a broad range of carrying capacities. I then discuss multiple ways to evaluate structural sensitivity in a stochastic setting, for predator-prey or other ecological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源