论文标题

从圆形体素模型中重建可编辑的棱柱形CAD

Reconstructing editable prismatic CAD from rounded voxel models

论文作者

Lambourne, Joseph G., Willis, Karl D. D., Jayaraman, Pradeep Kumar, Zhang, Longfei, Sanghi, Aditya, Malekshan, Kamal Rahimi

论文摘要

反向工程从其他表示形式进行的CAD形状是许多下游应用程序的重要几何处理步骤。在这项工作中,我们引入了一种新型的神经网络体系结构,以解决这项具有挑战性的任务,并使用可编辑,受约束的棱镜CAD模型近似平滑的签名距离函数。在训练过程中,我们的方法通过将形状分解为一系列2D轮廓图像和1D包膜功能来重建体素空间中的输入几何形状。然后可以以不同的方式重新组合这些,以允许定义几何损失函数。在推断期间,我们通过首先搜索2D约束草图的数据库来获取CAD数据,以查找近似配置文件图像的曲线,然后将它们挤出并使用布尔操作来构建最终的CAD模型。我们的方法比其他方法更接近目标形状,并输出与现有CAD软件兼容的高度可编辑的约束参数草图。

Reverse Engineering a CAD shape from other representations is an important geometric processing step for many downstream applications. In this work, we introduce a novel neural network architecture to solve this challenging task and approximate a smoothed signed distance function with an editable, constrained, prismatic CAD model. During training, our method reconstructs the input geometry in the voxel space by decomposing the shape into a series of 2D profile images and 1D envelope functions. These can then be recombined in a differentiable way allowing a geometric loss function to be defined. During inference, we obtain the CAD data by first searching a database of 2D constrained sketches to find curves which approximate the profile images, then extrude them and use Boolean operations to build the final CAD model. Our method approximates the target shape more closely than other methods and outputs highly editable constrained parametric sketches which are compatible with existing CAD software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源