论文标题
自然语言查询的类型定向可视化综合
Type-Directed Synthesis of Visualizations from Natural Language Queries
论文作者
论文摘要
我们提出了一种基于程序合成的新技术,以自动从自然语言查询中生成可视化。我们的方法将自然语言查询分解为改进类型规范,并使用意图和插槽范式和利用类型定向的合成来生成一组可视化程序,这些程序最有可能满足用户的意图。我们的改进类型系统捕获了自然语言查询中存在的有用提示,并允许综合算法拒绝违反输入数据集的完善设计指南的可视化。我们已经在名为Graphy的工具中实现了我们的想法,并在NLVCorpus上对其进行了评估,该工具由3个流行的数据集和700多个真实世界的自然语言查询组成。我们的实验表明,图形显着优于最先进的基于天然语言的可视化工具,包括变压器和基于规则的工具。
We propose a new technique based on program synthesis for automatically generating visualizations from natural language queries. Our method parses the natural language query into a refinement type specification using the intents-and-slots paradigm and leverages type-directed synthesis to generate a set of visualization programs that are most likely to meet the user's intent. Our refinement type system captures useful hints present in the natural language query and allows the synthesis algorithm to reject visualizations that violate well-established design guidelines for the input data set. We have implemented our ideas in a tool called Graphy and evaluated it on NLVCorpus, which consists of 3 popular datasets and over 700 real-world natural language queries. Our experiments show that Graphy significantly outperforms state-of-the-art natural-language-based visualization tools, including transformer and rule-based ones.