论文标题

主动学习辅助的中子光谱与对数高斯过程

Active learning-assisted neutron spectroscopy with log-Gaussian processes

论文作者

Parente, Mario Teixeira, Brandl, Georg, Franz, Christian, Stuhr, Uwe, Ganeva, Marina, Schneidewind, Astrid

论文摘要

三轴光谱仪(TAS)的中子散射实验通过测量强度分布来了解材料性质的起源,从而研究磁和晶格激发。 TAS实验的高需求和有限的光束时间可用性提出了自然的问题,我们是否可以提高其效率并更好地利用实验者的时间。实际上,有许多科学问题需要搜索信号,如果由于非信息区域的测量,手动完成可能会耗时且效率低下。在这里,我们描述了一种概率的主动学习方法,该方法不仅可以自主运行,即没有人类干扰,而且还可以通过利用logussian流程来直接以数学上合理的方式和方法上的稳健方式提供信息的位置。最终,可以在真实的TAS实验和包括许多不同激发的基准中证明所产生的好处。

Neutron scattering experiments at three-axes spectrometers (TAS) investigate magnetic and lattice excitations by measuring intensity distributions to understand the origins of materials properties. The high demand and limited availability of beam time for TAS experiments however raise the natural question whether we can improve their efficiency and make better use of the experimenter's time. In fact, there are a number of scientific problems that require searching for signals, which may be time consuming and inefficient if done manually due to measurements in uninformative regions. Here, we describe a probabilistic active learning approach that not only runs autonomously, i.e., without human interference, but can also directly provide locations for informative measurements in a mathematically sound and methodologically robust way by exploiting log-Gaussian processes. Ultimately, the resulting benefits can be demonstrated on a real TAS experiment and a benchmark including numerous different excitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源