论文标题

Lipschitz函数的亚代桥的密度在公制的Sobolev空间和应用于Wasserstein Sobolev空间的应用

Density of subalgebras of Lipschitz functions in metric Sobolev spaces and applications to Wasserstein Sobolev spaces

论文作者

Fornasier, Massimo, Savaré, Giuseppe, Sodini, Giacomo Enrico

论文摘要

我们证明了lipschitz合适子代理的密度密度的一般标准,在metric-sobolev space $ h^{1,p}(x,x,x,\ shssf {d},\ mathfrak {m mathfrak {m})$与正面和有限的borel borel borel量子指标$ \ m rabfak $ \ mathfrak $ \ mathfrak rape an $(x,\ mathsf {d})$。然后,我们为Wasserstein Sobolev空间$ H^{1,2}(\ Mathcal {p} _2(\ Mathbb {M}),W_ {2},W_ {2},\ Mathfrak {m})$ potition $ potition $ potion $ potion $ potion $ protial potifra,我们在WASSERSTEIN SOBOLEV空间中提供相关应用Kantorovich-Rubinstein-Wasserstein space $(\ Mathcal {p} _2(\ Mathbb {m}),W_ {2})$概率措施在有限的欧几里得空间中,是一个完整的Riemannian歧管,一个完整的Riemannian歧管,或可分离我们将证明这种Sobolev空间始终是希尔伯特式的,独立于选择参考度量$ \ Mathfrak {M} $,因此由此产生的Cheeger Energy是Dirichlet形式。我们最终将为$ \ mathfrak {M} $ - Wasserstein渐变的相应概念提供明确的表征,显示了有用的计算规则及其与切线束的一致性以及从Dirichlet形式继承的$γ$ -calculus。

We prove a general criterion for the density in energy of suitable subalgebras of Lipschitz functions in the metric-Sobolev space $H^{1,p}(X,\mathsf{d},\mathfrak{m})$ associated with a positive and finite Borel measure $\mathfrak{m}$ in a separable and complete metric space $(X,\mathsf{d})$. We then provide a relevant application to the case of the algebra of cylinder functions in the Wasserstein Sobolev space $H^{1,2}(\mathcal{P}_2(\mathbb{M}),W_{2},\mathfrak{m})$ arising from a positive and finite Borel measure $\mathfrak{m}$ on the Kantorovich-Rubinstein-Wasserstein space $(\mathcal{P}_2(\mathbb{M}),W_{2})$ of probability measures in a finite dimensional Euclidean space, a complete Riemannian manifold, or a separable Hilbert space $\mathbb{M}$. We will show that such a Sobolev space is always Hilbertian, independently of the choice of the reference measure $\mathfrak{m}$ so that the resulting Cheeger energy is a Dirichlet form. We will eventually provide an explicit characterization for the corresponding notion of $\mathfrak{m}$-Wasserstein gradient, showing useful calculus rules and its consistency with the tangent bundle and the $Γ$-calculus inherited from the Dirichlet form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源