论文标题

分析具有时间窗口界面的地图标记的贪婪启发式

Analysis of a Greedy Heuristic for the Labeling of a Map with a Time-Window Interface

论文作者

Bonerath, Annika, Driemel, Anne, Haunert, Jan-Henrik, Haverkort, Herman, Langetepe, Elmar, Niedermann, Benjamin

论文摘要

在本文中,我们分析了用于自动地图标签的贪婪启发式术的近似质量。作为输入,我们有一组事件,每个事件都与固定位置,时间戳和重量的标签相关联。让时间窗口标记为这些标签的选择,以便所有相应的时间戳都位于查询的时间窗口中,没有两个标签重叠。时间风格标记问题的解决方案由一个数据结构组成,该数据结构编码每个可能的时间窗口的时间窗口标签;当用户使用滑块接口指定感兴趣的时间窗口时,我们为相应的标签查询数据结构。 我们将时间窗口标签解决方案的质量定义为每个时间窗口标签中标签的权重的总和,这些标签在所有时间窗口中都集成。我们的目标是在用户收缩时间窗口时,标签可能永远不会消失的条件下最大化质量。在本文中,我们分析了在这种情况下可以实现的最大质量的贪婪启发式如何。 一方面,我们提出了一个实例,具有相等大小和相等重量的平方标签,贪婪的启发式方法未能找到至少1/4的最佳解决方案质量的解决方案。另一方面,我们证明贪婪的启发式方法确实可以保证使用最佳解决方案质量的至少1/8的解决方案。如果具有相等大小和相等重量的磁盘形标签,则贪婪的启发式为最佳解决方案质量的至少1/10提供了解决方案。如果标签是尺寸相等的正方形或磁盘,最大重量除以最小重量,则最多为b,则贪婪的启发式的近似值比theta(log b)。

In this paper, we analyze the approximation quality of a greedy heuristic for automatic map labeling. As input, we have a set of events, each associated with a label at a fixed position, a timestamp, and a weight. Let a time-window labeling be a selection of these labels such that all corresponding timestamps lie in a queried time window and no two labels overlap. A solution to the time-window labeling problem consists of a data structure that encodes a time-window labeling for each possible time window; when a user specifies a time window of interest using a slider interface, we query the data structure for the corresponding labeling. We define the quality of a time-window labeling solution as the sum of the weights of the labels in each time-window labeling, integrated over all time windows. We aim at maximizing the quality under the condition that a label may never disappear when the user shrinks the time window. In this paper, we analyze how well a greedy heuristic approximates the maximum quality that can be realized under this condition. On the one hand, we present an instance with square labels of equal size and equal weight for which the greedy heuristic fails to find a solution of at least 1/4 of the quality of an optimal solution. On the other hand, we prove that the greedy heuristic does guarantee a solution with at least 1/8 of the quality of an optimal solution. In the case of disk-shaped labels of equal size and equal weight, the greedy heuristic gives a solution with at least 1/10 of the quality of an optimal solution. If the labels are squares or disks of equal size and the maximum weight divided by the minimum weight is at most b, then the greedy heuristic has approximation ratio Theta(log b).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源