论文标题
在高旋转重力中的边界 - 边界立方相关因子的批量局部性和规格不变性
Bulk locality and gauge invariance for boundary-bilocal cubic correlators in higher-spin gravity
论文作者
论文摘要
我们考虑在4个维度上使用A型高旋转重力,在自由O(n)矢量模型上全息二。在这一理论中,高旋转边界电流的立方相关因子通过Sleight-Taronna Cubic顶点在整体中复制。我们将这些立方相关器从局部边界电流扩展到双向边界算子,这些边界运算符,其中包含泰勒膨胀中局部电流的塔。在散装中,这些边界双焦点由线性化的didenko-vasiliev(DV)“黑洞”表示。我们认为,立方相关器仍由局部散装结构描述,其中包括一个新的顶点,将两个高旋转字段耦合到DV解决方案的“世界线”。作为一般参数的例证,我们以数值分析了两个局部标量和一个双尾部的相关器。我们还证明了Sleight-Taronna顶点在其原始的适用性范围之外的量规范性属性:在没有来源的情况下,它不仅在tranverse-traceless的无轨距内不仅是不变的,而且通常包含DV解决方案的“全球”。
We consider type-A higher-spin gravity in 4 dimensions, holographically dual to a free O(N) vector model. In this theory, the cubic correlators of higher-spin boundary currents are reproduced in the bulk by the Sleight-Taronna cubic vertex. We extend these cubic correlators from local boundary currents to bilocal boundary operators, which contain the tower of local currents in their Taylor expansion. In the bulk, these boundary bilocals are represented by linearized Didenko-Vasiliev (DV) "black holes". We argue that the cubic correlators are still described by local bulk structures, which include a new vertex coupling two higher-spin fields to the "worldline" of a DV solution. As an illustration of the general argument, we analyze numerically the correlator of two local scalars and one bilocal. We also prove a gauge-invariance property of the Sleight-Taronna vertex outside its original range of applicability: in the absence of sources, it is invariant not just within tranverse-traceless gauge, but rather in general traceless gauge, which in particular includes the DV solution away from its "worldline".