论文标题
关于指数减少的Sombor指数的猜想
On the conjecture about the exponential reduced Sombor index
论文作者
论文摘要
令$ g =(v(g),e(g))$为图,而$ d(v)$为v(g)$中的顶点$ v \的程度。 $ g $的指数减少了$ g $,由$ e^{so_ {so_ {so_ {red}}(g)$,定义为$$ e^{so_ e^{so_ {so_ {red}}(g)= \ sum_ {uv \ in E(g)}我们获得了极端树木的特征,其最大指数减少了SOMBOR指数。该结果表明,刘,唐和刘(在降低的Sombor索引及其应用程序,Match Commun上,Sombor提出的指数降低的Sombor指数)的猜想。数学。计算。化学86(2021)729--753]为负。
Let $G=(V(G),E(G))$ be a graph and $d(v)$ be the degree of the vertex $v\in V(G)$. The exponential reduced Sombor index of $G$, denoted by $e^{SO_{red}}(G)$, is defined as $$e^{SO_{red}}(G)=\sum_{uv\in E(G)}e^{\sqrt{(d(u)-1)^2+(d(v)-1)^2}}.$$ We obtain a characterization of extremal trees with the maximal exponential reduced Sombor index among all chemical trees of order $n$. This result shows the conjecture on the exponential reduced Sombor index proposed by Liu, You, Tang and Liu [On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729--753] is negative.