论文标题
在角色品种的同一个同学大厅代数上
On the cohomological Hall algebra of a character variety
论文作者
论文摘要
Schiffman和Vasserot描述了第二种矩阵多种多样的二维共同厅代数(COHA)的乘法。该结构可以推广到其他在光滑环境品种上函数的零位置存在的品种。在$ g $ riemann表面的基本组的角色种类的2D COHA上,我们比较了由标准呈现和布兰瓷砖呈现的乘法所引起的乘法。
A multiplication on the 2D cohomological Hall algebra (CoHA) of the variety of commuting matrices was described by Schiffman and Vasserot. This construction can be generalised to other varieties that exist as the zero-locus of a function on a smooth ambient variety. On the 2D CoHA of the character variety of the fundamental group of a genus $g$ Riemann surface, we compare the multiplication induced by the standard presentation and that of a brane tiling presentation.