论文标题
hadamard态在球形对称的特征表面,半古典爱因斯坦方程和鹰效应
Hadamard states on spherically symmetric characteristic surfaces, the semi-classical Einstein equations and the Hawking effect
论文作者
论文摘要
我们研究了通过在球形对称空间时间中以对称性为中心的零锥的特征初始数据来定义的无准hadamard状态。我们表征了零边界两点函数的必要奇异行为,以便可以在此无效边界处定义非线性可观察力,并给出计算这些可观察物的公式。这些结果扩展了零边界状态的早期表征,这些状态定义了大部分空锥体中的Hadamard状态。作为我们派生的公式的应用,我们考虑了它们对半古典爱因斯坦方程的影响,并计算与塌陷体附近的鹰辐射相关的真空极化。
We investigate quasi-free Hadamard states defined via characteristic initial data on null cones centred at the axis of symmetry in spherically symmetric space-times. We characterize the necessary singular behaviour of null boundary two-point functions such that one can define non-linear observables at this null boundary and give formulas for the calculation of these observables. These results extend earlier characterizations of null boundary states defining Hadamard states in the bulk of the null cone. As an application of our derived formulas, we consider their implications for the semi-classical Einstein equations and calculate the vacuum polarization associated with Hawking radiation near a collapsing body.